Введение в теорию атома
Вторая задача о стационарном движении с потенциальной энергией в поле центральной силы. В классическом рассмотрении наряду с тангенциальной, чисто вращательной, появилась бы и радиальная компонента энергии.
В атомах существенную роль играет лишь электростатическое взаимодействие, подчиняющееся закону Кулона. Силы гравитации по сравнению с ним неизмеримо мала.
Для одного электрона в поле ядра с порядковым номером Z в Периодической Системе Менделеева потенциальная энергия притяжения в системе СГС равна U(r) = - Z
×
e2/r
.
8.4.
Одноэлектронные атомы. Одноэлектронными сферически симметричными системами являются атом водорода, водородоподобные ионы (ионы, ядра которых имеют порядковые номера Z, в поле которых находится всего 1 электрон. Такие ионы образуются при Z-1 ступенчатой ионизации), а также атом позитрония, который образуется перед аннигиляцией электрон - позитронной пары в виде стационарной системы перед тем, как они аннигилируют, излучая два гамма-кванта.
8.5. Перевод лапласиана в шаровые координаты можно осуществить, следуя различным схемам. В сферических координатах лапласиан выглядит на первый взгляд довольно внушительно, но при ближайшем рассмотрении оказывается конструкцией, достаточно простой. Несложные, но довольно длительные преобразования приводят к следующему выражению:
. (8.3)
8.6.
Компоненты лапласиана.
Для сокращения выделим в лапласиане два слагаемых - радиальное и угловое:
(8.4)
Угловой оператор называется оператором Лежандра.
Лапласиан приобретает сжатый вид:
(8.5)
8.7.
Угловой оператор
(оператор Лежандра)
в свою очередь разделяется далее на два независимых оператора. Один действует на переменную долготы J, второй - на переменную широты j, и получается:
. (8.6)
Операторное уравнение для оператора Лежандра встречается в нескольких очень важных фундаментальных ситуациях. Это задачи: 1) о квантовых состояниях и энергетических уровнях ротатора - линейной молекулы, свободно вращающейся вокруг центра массы. 2) об электронном строении атома H и водородоподобных ионов.
8.8. Уравнение Лапласа для сферической системы:
Уравнением Лапласа называется дифференциальное уравнение в частных производных второго порядка вида . В сферических переменных оно имеет вид
. (8.7)
. (8.8)
Решения находятся по методу Фурье: для разделения переменных искомое решение представляется в виде произведения радиальной и угловой компонент функций.
8.9.
Разделение переменных.
Общее правило:
Если в дифференциальном уравнении в частных производных можно выделить оператор, включающий несколько переменных, и привести его к аддитивной форме, придавая ему вид суммы слагаемых, определённых лишь для отдельных переменных, то исходное дифференциальное уравнение распадается на систему дифференциальных уравнений.
Каждое из них и их решения определены лишь на переменных соответствующего оператора-слагаемого. Частные решения исходного дифференциального уравнения выбираются в мультипликативном виде, как произведения функций – решений отдельных уравнений системы. Этот результат сформулируем в виде краткого правила: «Оператор аддитивен-Решения мультипликативны». Этот подход встречается всюду в теории многоэлектронных систем – атомов и молекул.
8.10. Радиальная часть общего решения сферического уравнения Лапласа выбрана в виде степенной функции от радиальной переменной с показателем степени l
принимающим одно из целочисленных неотрицательных значений. В этом случае соблюдается симметрия общего решения по отношению к взаимным перестановкам декартовых координат, и делается возможно построение регулярных решений (функций класса Q
), которые обладают известными свойствами конечности, однозначности и непрерывности, а также могут быть и пронормированы.
. (8.9)
Угловые сомножители общего решения Y
(J,j) называются сферическими гармониками (шаровыми функциями). Запишем уравнение Лапласа, и рассмотрим процедуру разделения переменных:
. (8.10)
Смотрите также
Синтех азотной кислоты
Азотная
кислота по объему производства занимает среди других кислот второе место после
серной кислоты. Все возрастающий объем производства HNO3
объясняется огромным значением азотной кислот ...
Третья группа периодической системы
Атомы элементов данной группы содержат во внешнем слое
максимально по три электрона. Поэтому тенденция к дальнейшему присоединению
электронов (с пополнением внешнего слоя до октета) не может быть д ...