Влияние кислорода на активность нанесенного ванадиевого катализатора в процессе газофазной полимеризации этилена

Научная литература / Влияние кислорода на активность нанесенного ванадиевого катализатора в процессе газофазной полимеризации этилена
Страница 2

Эффекты, наблюдаемые при введении кислорода в процессе полимеризации, обусловлены протеканием химических реакций кислорода либо с исходными компонентами катализатора, либо с продуктами их взаимодействия. Поэтому при изучении влияния кислорода на каталитическую активность количество добавки целесообразно определять не только абсолютной концентрацией кислорода, но и отношением концентраций кислорода и каждого из компонентов катализатора, т. е. мольным отношением 02: V и О2: AI. Добавки кислорода вводили в реакционную зону на стадии формирования каталитических центров и в ходе полимеризации.

В первом случае проводили предварительное взаимодействие одного из компонентов катализатора с кислородом (в течение 5 мин), затем в систему вводили второй компонент и мономер. Условно такой порядок подачи реагентов можно обозначить [А1(изо-Вu)3+О2]+V (I) и [V+О2] + +А1(изо-Вu), (II).

Рис. 2. Кинетические кривые полимеризации этилена на нанесенном ванадиевом катализаторе при различных концентрациях кислорода для системы I. 70°, Al: V= •=18-23, [С2Н4] =0,018 моль/л, содержание ванадия на носителе 0,27 вес.%- 02: А1=0 (1); 0,1 (2); 0,15 (3)

Рис. 2 демонстрирует влияние добавок кислорода на процесс полимеризации для системы I. Из рисунка видно, что с увеличением мольного отношения О2: А1 снижается каталитическая активность, меняется характер кинетики полимеризации, т. е. резко ускоряется дезактивация катализатора. При мольном отношении О2: А1=0,2 (соответственно 0,2 об.% О2) система I полностью теряет каталитическую активность.

Известно, что окисление алюминийтриалкилов кислородом приводит к образованию их алкоксипроизводных [10, 11]. Реакция протекает через стадии образования высокореакционноспособных перекисных соединений алюминия и их превращений. При температурах выше 20° основным продуктом реакции является моноалкоксид алюминия. На примере титановых катализаторов показано, что системы, включающие в качестве сокатализа-тора алкоксипроизводные триэтилалюминия, либо характеризуются низкой каталитической активностью [11], либо не активны в полимеризации [12].

В настоящей работе с целью установления причин дезактивации системы I исследовали продукт окисления Аl(изо-Ви)3 — диизобутилалюми-нийизобутоксид как сокатализатор с VCL/перлит. Методика эксперимента не позволяла осуществлять полимеризацию в газовой фазе из-за низкой упругости паров А1(изо-Вu)2(ОВu-изо) (т. кип. 120°/0,65 гПа), поэтому опыты проводили в к-гептане. Подобное различие в скоростях полимеризации в жидкой и газовой фазе отмечается также Кейи [13] при полимеризации пропилена с <x-TiCl3 — AlEt2Cl.

Полученные экспериментальные результаты по полимеризации этилена с А1(изо-Вu)2(ОВu-изо) приведены на рис. 3 и сводятся к следующему: катализатор УС14/перлит не обладает каталитической активностью в сочетании с А[(изо-Вu)2(ОВu-изо); добавки А1(изо-Вu)2(ОВu-изо) на стадии формирования активных центров в виде смеси с А1(изо-Вu)3 при одной и той же концентрации триизобутилалюминия (рис. 3, кривые 3, 4) и в ходе полимеризации (рис. 3, кривая 5) приводят к снижению начальной скорости полимеризации и ускорению дезактивации катализатора. На основании этих результатов, исходя из представлений о биметаллической природе активных центров, можно высказать следующие предположения: во-первых, Al(uзo-Bu)2(OBu-uзo) не является алкилирующим агентом и его действие ограничивается образованием комплексов с исходными и алки-лированными соединениями ванадия; во-вторых, образующиеся комплексы являются, пo-видимому, более прочными, по сравнению с комплексами, включающими А1(изо-Вu)3 (из-за сильных донорных свойств А1(изо-Вu)2-(ОВu-изо) [14, 15]); диизобутилалюминийбутоксид может замещать А1(изо-Вu)3 в ванадий-алюминиевых комплексах; в-третьих, комплексы A1(изо-Bu)2(OBu-изо) с алкилированным ванадием неактивны в процессе полимеризации этилена.

Страницы: 1 2 3 4

Смотрите также

Современные дизельные, судовые и тяжелые моторные топлива
...

Витамины и организм человека
Витамины – низкомолекулярные органические соединения различной химической природы, необходимые для осуществления важнейших процессов, протекающих в живом организме. Для нормальной жизнед ...

Качественный анализ анионов
Цель аналитической химии - установление качест­венного и количественного состава вещества или смеси веществ. В соответствии с этим аналитическая химия делится на качественный и количественны ...