Основность аминов в газовой фазе

Страница 6

Ионы в газовой фазе не стабильны. Раз образовавшись, они быстро гибнут в результате рекомбинации с ионами противополож­ного знака или на стенке [5]. Наиболее неустойчивы в газовой фазе простейшие ионы Н30+, NН4+ . В жидкой среде ионы стабили­зируются за счет сольватации, энергия которой может превысить энергию образования иона из молекулы. В этом случае можно ожи­дать инверсии основности при сопоставлении данных в газовой фазе и в растворе. Строение многих слабых органических основа­ний способствует делокализации образовавшегося при протонировании заряда. Такие ионы стабильны в газовой фазе, а основ­ность соответствующих оснований при прочих равных условиях бу­дет выше. Именно возможностью делокализации положительного заряда в анилиниевом ионе объясняется более высокая по сравне­нию с аммиаком основность анилина в газовой фазе, тогда как в воде аммиак - значительно более сильное основание, чем анилин [5,11].

Таким образом, эксперименты в газовой фазе позволяют вы­двинуть критерий сравнения основности соединений (в том числе и слабых оснований), проследить влияние на основность заместителей в реакционных сериях. Во всех подобных случаях в качест­ве такого критерия рассматривается сродство к протону РА. Однако экспериментальная техника определения РА пока еще чрезвы­чайно сложна и недоступна для большинства химических лаборато­рий. Кроме того, в сложных случаях, когда возможно присоедине­ние протона к более чем одному центру основности соединения (а такие ситуации - отнюдь не редкость), интерпретация полученных экспериментально параметров вызывает существенные затруднения. 3 связи с этим были предприняты попытки установления линейных зависимостей между РА и другими параметрами, более доступными экспериментально и адекватно отражающими сложный характер протонирования.

В работах [12, 13] одновременно и независимо предложена линейная зависимость между РА и энергией ионизации для кисло­род- и азотсодержащих оснований:

РА = - IЕ(Х1s) + const (9) где IЕ(Х1s) - энергия ионизации для 1s-электрона центра основности - атома кислорода (X = 0) или азота X = М). Теоретическое обоснование зависимости (9) базируется на сходстве мо­делей протонизации и удаления 1s-электрона при ионизации, И в том и в другом случае энергия может быть выражена суммой двух членов (термов): один терм связан с электронной плотностью на орбитали, ответственной за ионизацию (initial state), другой - со стабилизацией заряда после ионизации (final state).Заместители могут оказывать влияние как на первый терм (индук­тивный эффект), так и на второй (поляризационный эффект), при­чем последний в случав органических оснований обычно преобла­дает в обеих моделях ионизации [13]. Вместо IЕ в уравнении (9) было предложено использовать потенциал ионизации (IР) [13,14]. По мнению авторов, применение величины IР более кор­ректно в случае сложных органических молекул, направление про­тонизации в которых может быть неоднозначным. В работе [13] приведены корреляционные соотношения между РА и IР и, в част­ности, для карбонильных соединений (РА = -0,690 IР + 15,03) и для спиртов и эфиров (РА = - 0,397 IР + 12,29). Подводя итог рассмотрению экспериментальных исследований процесса переноса протона в газовой фазе, отметим, что найден­ные в этих работах критерии полезны и пригодны для количест­венного сравнения основности в данных условиях*. Более того, из сопоставления экспериментальных данных, полученных для одних и тех же соединений в газовой фазе и в растворе, могут быть вы­полнены количественные оценки энергии сольватации про тониро­ванных оснований. В основу таких расчетов положен термодинами­ческий цикл Борна [б].

Однако довольно часто при изучении протонирования органи­ческих оснований возникает необходимость установить центр при­соединения протона. В тех случаях, когда органическая молекула обладает несколькими вероятными центрами основности, не всегда можно предугадать, куда именно присоединится протон. При этом весьма желательно иметь наглядное представление об изменении электронной структуры и конфигурации молекулы в результате про­тонирования. Как правило, экспериментальные метода не дают однозначного ответа на эти вопросы. Кроме того, некоторые за­висимости, установленные экспериментально, например (8), (9), нуждаются в теоретической интерпретации. В этих случаях на помощь приходят квантово-химические методы исследования.

Страницы: 1 2 3 4 5 6 

Смотрите также

Отчет по практике на ОАО Пластик
...

Полимеры
...

Азокрасители. Ализариновый желтый
Области применения органических красителей очень многочисленны и разнообразны. Их применяют для окрашивания пряжи и ткани самого различного вида: льняных, шерстяных, хлопчатобумажных, шёлко ...