Электрофоретический и релаксационный эффекты в электролитах, их влияние на электрическую проводимость.

Информация для студентов / Электропроводность электролитов / Электрофоретический и релаксационный эффекты в электролитах, их влияние на электрическую проводимость.
Страница 1

Теория электролитической диссоциации Аррениуса не учиты­вала влияния концентрации на подвижность ионов, хотя, как вы­яснилось, влияние концентрации на подвижность может быть весьма существенным. Уменьшение эквивалентной электропровод­ности с концентрацией Аррениус объяснял не уменьшением по­движности ионов, а уменьшением степени диссоциации.

Как уже было сказано, Кольрауш вывел эмпирическое урав­нение, связывающее эквивалентную электропроводность сильных электролитов с концентрацией:

λ = λ∞ - А

Так как λ∞ = U∞ + V∞ и λ = U + V , то следовательно,

U = U∞ - В1и V = V∞ - В2

где В1 + В2 = А.

Дебай и Хюккель объясняли уменьшение подвижности ионов и эквивалентной электропроводности λ сильных электролитов с увеличением концентрации наличием ионной атмосферы. Дей­ствительно, каждый ион окружен ионной атмосферой, состоящей преимущественно из ионов противоположного центральному иону знака, плотность которой увеличивается с повышением концентра­ции электролита.

При наложении электрического поля ион начинает двигаться в одну сторону, а ионная атмосфера — в противоположную. Дви­жение ионов разных зарядов, при этом сольватированных, в про­тивоположных направлениях создает как бы дополнительное тре­ние, которое и уменьшает абсолютную скорость движения ионов. Этот эффект торможения носит название электрофоретического эффекта. По мере увеличения концентрации плотность ионной ат­мосферы увеличивается, следовательно, увеличивается и тормо­зящий электрофоретический эффект.

Не следует думать, что при беспорядочном движении иона его ионная атмосфера движется вместе с ним как одно целое. При движении ион покидает свою ионную атмосферу и непрерывно на пути своего движения создает новую. Этот процесс разрушения старой и образования новой ионной атмосферы протекает хотя и быстро, но не мгновенно, вследствие чего при движении иона на­рушается симметричность ионной атмосферы, причем плотность ее больше позади движущегося иона. Очевидно, появление асим­метрии ионной атмосферы также вызывает некоторое торможение поступательного движения иона, которое получило название эф­фекта асимметрии или релаксации. Таким образом, из-за наличия ионной атмосферы при движении иона возникают два тормозя­щих эффекта: электрофоретический, обусловленный движением ионной атмосферы в сторону, противоположную направлению дви­жения иона, и эффект релаксации обусловленный асимметрией ионной атмосферы.

Убедительным подтверждением правильности представлений Дебая и Хюккеля является так называемый эффект Вина, обнару­женный в 1927 г. Если уменьшение подвижности ионов с увели­чением концентрации объясняется наличием ионной атмосферы, то уничтожение последней должно привести к возрастанию по­движности, а следовательно, и электропроводности до предель­ного значения. Поскольку скорость движения иона пропорцио­нальна напряжению, а скорость образования ионной атмосферы является конечной величиной, то, очевидно, путем увеличения на­пряженности можно добиться такой большой скорости движения ионов, при которой ионная атмосфера уже не будет успевать об­разовываться. Тогда, покинув свои ионные атмосферы (которые немедленно разрушаются), ионы будут двигаться уже без них, а следовательно, будут обладать максимальной скоростью движе­ния и предельной Подвижностью. Это и было установлено Вином, который увеличив напряженность поля 200000 в/см, наблюдал увеличение эквивалентной электропроводности до предельного значения λ∞.

Интересно отметить, что в слабых электролитах эффект Вина оказался го­раздо больше, чем в сильных. Это обстоятельство указывает на увеличение сте­пени диссоциации растворенных молекул под влиянием электрического поля большой напряженности.

В 1928 г. Дебай и Фалькенгаген теоретически рассмотрели влияние частоты переменного тока на электропроводность элек­тролитов и установили, что при увеличении частоты выше некото­рого значения должно наблюдаться заметное возрастание элек­тропроводности. Явление увеличения электропроводности с час­тотой получило название частотного эффекта или дисперсии электропроводности и было экспериментально подтверждено рядом исследователей.

Страницы: 1 2

Смотрите также

Бетулин и его производные
В последние годы, когда береза вовлекается все больше в химическую переработку, ее экстрактивные вещества исследуют в более широком аспекте. Одним из основных продуктов её переработки являет ...

Цель работы
Цель данной работы состоит в разработке схемы переработки вторичного сырья (в данном случае карбидов тугоплавких металлов режущих инструментов их осколков, кусковые отходы), при заданных производит ...

Экологические аспекты создания водородной энергетики (для учащихся средней школы)
Введение в проблему водородной энергетики для учащихся 9 классов на первом этапе возможно в виде как приведенных ниже выполненных самим учителем докладов, так и небольших сообщений, подготовленных с ...