Спектры люминесценции и ее возбуждения Се-Еu-содержащих стекол

Научная литература / Золь-гель метод / Спектры люминесценции и ее возбуждения Се-Еu-содержащих стекол
Страница 1

На рис. 4.3 изображены спектры люминесценции и ее возбуждения Ce-Eu-содержащих кварцевого гель-стекла и ксерогеля с 2С(СеCl3)=С(EuCl3)=1 масс %. Видно, что при lвозб=395 нм узкополосный спектр люминесценции соактивированного стекла (кривая 1) отличается от соответствующего спектра рассмотренного выше одноактивированного стекла существенным ослаблением полос 5D0®7F1 и 5D0®7F4 и усилением расщепления полосы 5D0®7F2. Cмещении lвозб в коротковолновую сторону ведет к радикальному изменению этого спектра . В частности, при lвозб=320 нм (кривая 2) происходит многократное усиление полосы 5D0®7F1, сильное расщепление полосы 5D0®7F2 на две компоненты приблизительно одинаковой интегральной интенсивности,причем полоса 5D0®7F0 (l~580 нм) почти полностью отсутствует. Примечательно, что при Т=298 К относительная интенсивность полосы 5D0®7F1 уменьшается почти в два раза. При сканировании lвозб в области 300-380 нм общий вид узкополосного спектра сохраняется, но соотношение относительных интенсивностей переходов в 7Fj-cостояния и количество компонент расщепления полосы 5D0®7F2 изменяются. Заметим однако, что появляющиеся при изменении lвозб дополнительные компоненты имеют существенно меньшую интенсивность, чем основные. При lвозб<280 нм узкополосный спектр люминесценции уподобляется полученному при lвозб=395 нм. Спектр возбуждения люминесценции стекла при lрег=615 нм (кривая 3) в общих чертах повторяет спектр, изображенный на рис. 2 кривой 5, а при lрег=591 нм появляется интенсивная широкая полоса с максимумом при 320 нм (кривая 4). Узкополосный спектр люминесценции соактивированного ксерогеля при lвозб=320 нм и Т=298К слабо отличается от спектра люминесценции Eu-содержащего ксерогеля, однако при Т=77К (кривая 5) он начинает уподобляться кривой 2.

Спектры люминесценции Eu- и Ce-Eu-содержащих стекол, отожженных в водороде. Видно, что для одноактивированного стекла при lвозб=320 нм имеет место появление широких дополнительных перекрывающихся полос при 480 и 600 нм (кривая 1). При этом его узкополосный спектр подобен его же узкополосному спектру до отжига. Изменение lвозб в диапазоне 300-400 нм сопровождается перераспределением интенсивности и небольшим смещением широких полос, но практически не отражается на относительных интенсивностях и спектральном положении узких. В спектре соактивированного стекла при lвозб=320 нм узкополосная люминесценция ионов Eu3+ вообще не регистрируется, а наблюдается лишь широкая полоса при 470 нм (кривая 2).

Анализ показывает, что в соактивированном стекле, учитывая увеличение (по сравнению с одноактивированным стеклом) относительной интенсивности и расщепления “сверхчувствительного” перехода 5D0®7F2 (см. кривую 1), имеет место усиление искажения оптических центров европия и, кроме того, дополнительно появляется новый тип центров (см. кривую 2), эффективно возбуждаемых в широкой полосе при 320 нм (кривая 4). При этом значительное усиление электродипольных переходов ионов Eu3+ в дополнительных центрах с повышением Т в диапазоне (77-298) К свидетельствует о достаточно большом вкладе динамической части потенциала локального поля в их вероятности и, как следствие, о высокой симметрии таких центров. Исходя из числа наиболее интенсивных линий и большей разрешенности перехода 5D0®7F1 по сравнению с электродипольным переходом 5D0®7F2 (ср. кривые 2 и 3), можно полагать, что тип центров, возбуждаемый в широкой полосе с максимумом при 320 нм, характеризуется кубической симметрией.

Интенсивная широкая полоса с максимумом при 320 нм в спектре возбуждения люминесценции рассмотренных кубических центров ионов Eu3+ судя спектрам люминесценции термообработанных в водороде стекол, не может быть связана с передачей возбуждений от ионов Се3+. Действительно, для таких стекол узкополосная люминесценция с максимумом при 590 нм вообще отсутствует, а наблюдается лишь люминесценция Се(III) [122, 38] для соактивированного стекла либо люминесценция ионов Eu3+ с максимумом при 615 нм и широкополосная люминесценция Eu(II) [124] для одноактивированного стекла. Очевидно, что здесь, так же как в Се-Sm-содержащем стекле [118], имеет место образование сложных центров, в которых ионы Се4+ и соактиватора соединены мостиковым кислородом, а передача возбуждений последним осуществляется от метастабильных фотовосстановленных ионов (Се4+)-, спектр поглощения которых близок к одноименному спектру стабильных Се3+ [122, 111]. Ионный радиус четырехзарядного церия составляет ~0,8 [108] и, в соответствии с геометрическим критерием [107], такие ионы могут образовывать церий-содержащие полиэдры с Nc=7 и, возможно, 6. В последнем случае, согласно следствию [106] из правила электростатической валентности Полинга, они могут выполнять роль буферных элементов, способствующих вхождению в кремний-кислородный каркас более высококоординированных ионов европия и, тем самым, образованию таких сложных центров. Поскольку их минимальная доля не может быть ниже квантового выхода сенсибилизации люминесценции ионов Eu3+ ионами (Се4+)-, попытаемся оценить ее, используя формулу (4.1) и кривые 3 и 4 на рис. 5.1 и 5.3 соответственно. Для этого в указанной формуле параметры с индексами “ff” следует взять при l=530 нм, а с индексами “ct” - при 390 нм>l>320 нм. Несложный расчет показывает, что при 2С(СеCl3)=С(EuCl3)=1 масс %. искомая величина составляет ~3%.

Страницы: 1 2

Смотрите также

Гомологические и аналитические пары спектральных линий
При изменении температуры источника возбуждения спектра (ИВС) значительно изменяется интенсивность спектральных линий, поэтому в качестве аналитических пар спектральных линий используют гомологичес ...

Полистирол
...

Полигалогенпроизводные алканов
...