Вискозиметрия и кинетика начальных стадий отверждения полиуретанов

Научная литература / Вискозиметрия и кинетика начальных стадий отверждения полиуретанов
Страница 2

Результаты обработки экспериментальных данных по этой формуле приведены на рис. 1, б. Однако экспериментальные данные на рис. 1, б аппроксимируются не одной прямой, а двумя линейными участками с различными угловыми коэффициентами. Изменение угла наклона прямой на рис. 1, б может свидетельствовать либо об изменении константы скорости (т. е. в данном случае об ускорении реакции на втором этапе), либо об изменении механизма реакции после нескольких начальных актов конденсации. К аналогичным выводам, свидетельствующим о невозможности описания даже начальных стадий отверждения одним значением константы скорости, приводит также обработка данных изотермической калориметрии.

В предположении второго порядка реакции и пропорциональности скорости превращения £1 интенсивности тепловыделения q зависимость q($) должна иметь вид

где с — нормирующая приборная константа, связывающая J3 и q

и пропорциональная суммарному тепловому эффекту реакции. Константу с следует подбирать так, чтобы наилучшим образом аппроксимировать экспериментальную зависимость q(t)

с помощью функции (1). Это проделано на рис. 2, из которого видно, что если такая аппроксимация вполне удовлетворительна для большей части процесса на его второй (заключительной) стадии, то она не годится для первой стадии. Справедливо и обратное. Это означает, что константа к не может быть постоянной для всего процесса.

Рис. 2. Изменение скорости тепловыделения д (1) и степени превращения $ (2) в процессе реакции

Рис. 3. Изменение вязкости реакционной массы во времени, а: 60 (1), 70 (2), 80 (3) и 90° (4); б: количества 3,3'-дихлор-4,4'-диаминодифенилметана 1,1 {Т); 1,0 (2); 0,9 (3); 0,8 (4); 0,7 мол.% (5); 80°

Характерно, что точка расхождения экспериментальной и расчетной кривых на рис. 2 совпадает с точкой перелома на рис. 1, б. Полученные результаты, т. е. изменение наклона прямой на рис. 1, б и расхождение кривых на рис. 2, свидетельствуют о том, что в рассматриваемом случае изменяется характер процесса, отражающийся на его кинетике. Попытаемся понять причину этого явления с помощью реокинетического анализа.

Если образование полимера происходит по механизму линейной поликонденсации, то следует ожидать, что вязкость реакционной системы должна изменяться следующим образом [4, 6]: r=K(x0kt)a, где К—константа, зависящая от температуры и природы полимера, т. е. зависимость lg т] от lg t должна быть линейной с угловым коэффициентом, равным 3,4. Соответствующие данные приведены на рис. 3, а. Сопоставление результатов, приведенных на рис. 1 и 3, позволяет построить зависимость вязкости образующегося ПУ от молекулярной массы, которая приведена на рис._4. Полученная зависимость описывается степенной функцией вида т)—Na, где показатель степени а изменяется от 1,0 до 4,6. Если величина а=1,0 является характерной для полимера с небольшой ММ, то значение 4,6 превышает «универсальное» значение этого показателя, равное 3,4. Такое же завышенное значение этого показателя следует и из рис. 3.

Рассмотрим также температурную зависимость вязкости на различных стадиях процесса поликонденсации, что важно, поскольку эта зависимость включает формальные реологические константы материала.

Температурная зависимость вязкости реакционной системы определяется энергией активации как собственно процесса химической реакции U, так и энергией активации вязкого течения Е, и для поликонденсации «эффективные» значения энергии активации выражаются следующим образом [6]: Et=E—all; E=U—(Е/а), где Et —«эффективные» энергии активации, отражающие температурные зависимости вязкости при постоянной продолжительности реакции Et, или времени, необходимого для достижения определенного уровня вязкости £"„.

Результаты обработки экспериментальных данных согласно этим формулам приведены на рис. 5. Сравнение величин энергии активации процесса конденсации U, определенных из зависимости к=к0 ехр (— U/RT) и но рис. 5, при значении а=4,6 и независимо измеренном значении Е= =41,6 кДж/моль дает практически одну и ту же величину, равную 31,5 кДж/моль.

Страницы: 1 2 3

Смотрите также

Жирорастворимые витамины
Витамины – это низкомолекулярные органические вещества различной химической структуры, обладающие разнообразным спектром физиологического действия. «Vita» - жизнь, «amin» - азот, то есть ...

Абсорбционная установка
Ключевые слова: УСТАНОВКА, АБСОРБЦИЯ, КОЛОННА, РАСЧЕТ, ТЕХНОЛОГИЯ, АММИАК, ТАРЕЛКА. В общей части обсуждены современные методы извлечения компонентов из газовых смесей. Принята абсорбцио ...

Железо и его роль
Железо - (лат. Ferrum), Fe (читается «феррум»), химический элемент, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не уста ...