Вискозиметрия и кинетика начальных стадий отверждения полиуретанов

Научная литература / Вискозиметрия и кинетика начальных стадий отверждения полиуретанов
Страница 1

Химизм реакций образования полиуретанов исследовали во многих работах, что позволило составить общее представление об этом процессе [1]. Значительно меньше изучено изменение реологических свойств в процессе образования полиуретанов [2, 3], хотя этот вопрос представляет как общетеоретический, так и технологический интерес.

Процесс формирования трехмерных сетчатых структур при образовании полиуретанов (ПУ) из полифункциональных олигомеров можно рассматривать как происходящий в две стадии [2—4]. Вначале интенсивно увеличивается вязкость вследствие удлинения цепей и образования ветвлений при сохранении текучести реакционной массы, затем в критической точке («гель-точке»), когда образуется сплошная трехмерная сетка химических связей, текучесть утрачивается. С точки зрения оценки технологических свойств («перерабатываемое»), наибольший интерес представляет первая стадия, когда отверждаемый ПУ способен формоваться в изделия. В литературе описаны многие результаты изучения кинетики процесса образования ПУ, выполненные различными методами (ИК-спектроскопия, дифференциально-сканирующая калориметрия, торсионный анализ и т. д.) [1]. Однако наиболее прямую информацию относительно влияния протекания химической реакции на свойства образующегося ПУ дает вискозиметрический метод, который позволяет также высказать определенные суждения о макрокинетике процессов образования полимеров, поскольку может быть установлена связь между нею и реокинетикой полимеризации или поликонденсации [5].

В этой связи задача настоящей работы - изучение закономерностей роста вязкости в процессе отверждения ПУ в связи с исследованием кинетики начальной стадии этого процесса.

Исследовали макродиизоционат, синтезированный на основе политетраметилен-гликоля и 2,4-толуилендиизоционата в мольном соотношении 1: 2.Исходный политетраметиленгликоль содержал 3,5% гидроксильных групп. Mw/Mn, определенное гель-хроматографически, равно 1,7; Af„=1020 (эбуллиоскопия). Перед синтезом 2,4-то-луилендиизоционат перегоняли в вакууме (1,33 кПа) при 120°. Синтезированный макродиизоционат анализировали на содержание NCO-групп по известной методике. Отвердителем служил 3,3'-дихлор-4,4'-диаминодифенилметан, двукратно перекристаллизованный из гептана.

Реокинетические исследования проводили на ротационном вискозиметре «Рео-тест-2» с рабочим узлом конус-плоскость при низких скоростях сдвига. Для получения реакционной смеси макродиизоционат смешивали с необходимым количеством предварительно расплавленного 3,3'-дихлор-4,4'-диаминодифенилметана (т. пл. 103,2°) в быстродействующем смесительном устройстве при комнатной температуре. Затем реакционную смесь (~0,1 мл) помещали в рабочий узел вискозиметра, нагретый до температуры опыта. Специально проведенные эксперименты показали, что вследствие небольшого объема навески и интенсивного теплоотвода режим отверждения близок к изотермическому. Отклонения температуры от заданной не превышали 1°. Параллельно при условиях, которые стремились сделать максимально адекватными используемым в реокинетическом эксперименте, проводили отверждение реакционной системы вне вискозиметра с тем, чтобы оценить кинетику процесса: для этого через определенные промежутки времени определяли содержание NCO-групп. Погрешность при определении вязкости не превышала 6%, концентрации NCO-групп 5%. Третьей (кроме вискозиметрической и химической) независимой методикой изучения кинетики отверждения была калориметрия, с помощью которой оценивали скорость тепловыделения в процессе отверждения.

Рис. 1. Изменение концентрации концевых NCO-групп (а) и среднечис-ленной степени поликонденсации (б) в процессе реакции макродиизо-пианата с 3,3'-дихлор-4,4'-диаминодифенилметаном при 60 (1), 70 (2), 80 (3), 90 (4), 100° (5)

Увеличение вязкости на начальных стадиях отверждения ПУ может быть обусловлено удлинением макромолекулярных цепей вследствие протекания процесса линейной конденсации, поскольку используемые олиго-меры представляют собой бифункциональные соединения. В этом случае скорость роста макромолекулярных цепей отражается кинетикой уменьшения концентрации концевых функциональных групп. Изменение концентрации концевых NCO-групп до образования визуально наблюдаемой в растворе нерастворимой фракции показано на рис. 1, а. Кинетика процесса поликонденсации двух бифункциональных мономеров при их экви-мольном соотношении обычно описывается уравнением второго порядка по концентрации функциональных групп, интегрирование которого дает следующее известное выражение для среднечисленной степени поликонденсации образующего полимера: N—l=Xokt, где N — степень поликонденсации; Хо — начальная концентрация функциональных групп; к — константа скорости реакции; t — время.

Страницы: 1 2 3

Смотрите также

Билеты по химии органика и неорганика
...

Частицы и коллектив. Неразличимость и симметрия Коррекция статистических сумм для трансляции и ротации.
...

Введение в теорию многоэлектронного атома. Элементы теории многоэлектронных атомов
...