Подвижность ионов

Страница 2

Нужно помнить, что величины U и V (а следовательно, и U∞ и V∞) относятся к 1 г - экв данных ионов.

Подвижность является важнейшей характеристикой ионов, от­ражающей их специфическое участие в электропроводности элек­тролита.

В водных растворах все ионы, за исключением ионов H3О+ и ОН-, обладает подвижностями одного порядка. Это значит, что абсолютные подвижности ионов (и и v)—также величины одного порядка, равные нескольким сантиметрам в час (K+—2,5; ОН-— 4,16; H3О+ — 10 см/ч).

Если ионы окрашены, то их перемещение при известных усло­виях можно измерить непосредственно и, таким образом, опреде­лить абсолютные подвижности.

Пользуясь таблицей предельных подвижностей ионов и законом Кольрауша, можно легко вычислить предель­ную электропроводность соответствующих растворов.

Эквивалентная электропроводность растворов солей выражается величинами порядка 100—130 см2/(г-экв • ом). Ввиду исключи­тельно большой подвижности иона гидроксония величины λ∞ для кислот в 3—4 раза больше, чем λ∞ для солей. Щелочи занимают промежуточное положение.

Движение иона можно уподобить движению макроскопиче­ского шарика в вязкой среде и применить в этом случае формулу Стокса:

(34)

где е—заряд электрона; z—число элементарных зарядов иона; r—эффектив­ный радиус иона; η — коэффициент вязкости; Е/1 — напряженность поля.

Движущую силу — напряженность поля Е/1 при вычислении аб­солютных подвижностей принимаем равной единице. Следова­тельно, скорость движения ионов обратно пропорциональна их радиусу. Рассмотрим ряд Li+, Na+, К+. Так как в указанном ряду истинные радиусы ионов увеличиваются, то подвижности должны уменьшаться в тон же последовательности. Однако в действитель­ности это не так. Подвижности увели­чиваются при переходе от Li+ к К+ почти в два раза. Из этого можно сделать заключение, что в растворе и в ионной решетке ионы обладают разными радиусами. При этом чем меньше ис­тинный (“кристаллохимический”) радиус иона, тем больше его эффективный радиус в электролите. Это явление можно объяснить тем, что в растворе ионы не свободны, а гидратированы или (в об­щем случае) сольватированы. Тогда эффективный радиус движу­щегося в электрическом поле иона будет определяться в основном степенью его гидратации, т. е. количеством связанных с ионом мо­лекул воды.

Связь иона с молекулами растворителя, в частности с молеку­лами воды, ионно-дипольная, а так как напряженность поля на поверхности иона лития гораздо больше, чем на поверхности иона калия (ибо поверхность первого меньше поверхности второго, а радиус, т. е. расстояние диполей воды от эффективного точеч­ного заряда в центре иона, меньше), то степень гидратации иона лития больше степени гидратации иона калия. Согласно формуле Стокса многозарядные ионы должны обладать большей подвиж­ностью, чем однозарядные. Скорости движения многозарядных ионов мало отличаются от скоростей движения однозарядных, что, очевидно, объясняется большей сте­пенью их гидратации вследствие большей напряженности поля, создаваемого многозарядными ионами.

Необходимо помнить о том, что применимость формулы Стокса к отдельным ионам недостаточно обоснована. Формула Стокса описывает движение шара в непрерывной среде. Растворитель не является для ионов такой средой, поэтому все вытекающие из фор­мулы Стокса выводы, касающиеся гидратации ионов, носят лишь качественный характер и, по-видимому, применимы для количе­ственной оценки движения лишь больших шарообразных ионов типа N(С4H9)4+.

Страницы: 1 2 

Смотрите также

Коррозия металла
     Коррозия  стали  и  цветных  металлов принципиально отличается от коррозионных процессов в неметаллических  строительных  материалах. Большинство   так   называемых   драгоценных  метал ...

Особенности кинетики реакций на поверхности гетерогенных катализаторов
Рассмотрим подробнее применение закона действия масс для реакций на поверхности. Для описания скорости элементарной стадии используют закон действия поверхностей. Если процесс определяется с ...

Свойства арсенида индия
...