Модификация полиуретана с целью снижения горючести.
Горючесть – это комплексная, многофакторная характеристика материала или конструкции [2]. Она может включать следующие величины:
1) температура воспламенения или самовоспламенение;
2) скорости выгорания и распространения пламени по поверхности;
3) параметры, характеризующие условия, при которых протекает самоподдерживающийся процесс горения (состав среды, температура, давление, отвод тепла и т.д.).
Все методы снижения горючести полимерных материалов основаны на следующих основных принципах:
1) изменение теплового баланса реакции окисления за счет увеличения различного рода теплопотерь;
2) снижение потока тепла от пламени на полимер за счет создания защитных слоев, например из образующегося кокса;
3) уменьшение скорости газификации полимера;
4) уменьшение соотношения горючих и негорючих продуктов разложения материала в пользу негорючих.
Следует отметить, что в большинстве случаев невозможно добиться того, чтобы полимерный материал стал абсолютно негорючим и не сгорал в интенсивном огне. Однако большинство пожаров возникает от малокаллорийных источников тепла и огня – сигарет, спичек, свечей, короткого замыкания. Поэтому важно настолько понизить горючесть полимера, чтобы он медленнее загорался, медленнее распространялось пламя, а для загорания требовались бы более жесткие условия.
Полиуретаны относятся к группе полимеров, для которой возможно проведение двух видов модификаций, как путем наполнения, так и структурной.
Однако по данным научно-технической литературы методы структурной модификации целесообразно применять в тех случаях, когда существует необходимость изменить физико-механические параметры полимера. В тоже время, наполнение полиуретанов позволяет не только удешевить эластомеры, но и получить окрашенные материалы; придать им специфические свойства. Это обстоятельство, зачастую, вынуждает отказаться от структурных вариаций и прибегнуть к наполнению.
В настоящее время для большинства термопластичных полимерных материалов целесообразно использовать добавки, снижающие горючесть исходного материала – антипирены. Анализ литературных источников антипиреновой тематики показывает, что основными замедлителями горения полимерных материалов являются органические и неорганические соединения, содержащие как правило фосфор и галогены. Однако для повышения огнестойкости полимерных материалов вместе с основными замедлителями горения часто целесообразно использовать такие соединения как: бор-, алюминий-, кремний-, металлсодержащие соединения.
В зависимости от того, как антипирены вводятся и взаимодействуют с полимерами или исходными мономерами различают антипирены инертного и реакционного типов [3].
Инертные или неактивные антипирены механически совмещаются с полимером. В общем объеме потребления антипиренов доля инертных составляет около 80%. Эти антипирены привлекают внимание исследователей тем, что их применение не связано непосредственно с производством полимеров. Введение в композицию может быть осуществлено на стадиях переработки полимеров в изделия, что существенно расширяет возможности создания новых огнестойких материалов. В то же время инертным антипиренам присуще существенные недостатки. Это, прежде всего их влияние на физико-механические свойства полимерных материалов, склонность их к миграции на поверхность, способность вымываться водой, моющими средствами и т. д. В связи с этим, наблюдается определенная тенденция некоторого сокращения объема потребления инертных антипиренов по сравнению с реакционноспособными, которые вводятся в полимерный материал в процессе изготовления и становятся его неотъемлемой частью [4].
Реакционноспособные антипирены содержат в своих молекулах функциональные группы или атомы, участвующие в различных реакциях: полимеризации, поликонденсации, присоединения, структурирования и т. д. Реакционные антипирены можно подразделить на две самостоятельные подгруппы: антипирены полимеризационного типа и антипирены поликонденсационного типа.
Смотрите также
Электросинтез хлорной кислоты
...
Планирование дискриминирующих экспериментов
Для дискриминации гипотез используют
эксперименты различного типа.
Химические эксперименты. Различные
тестовые реакции часто позволяют определить вероятность участия того или иного
вещес ...
Витамины и организм человека
Витамины – низкомолекулярные органические соединения различной
химической природы, необходимые для осуществления важнейших процессов,
протекающих в живом организме.
Для нормальной
жизнед ...