Электронные оболочки

Краткая история химии / Атомное ядро / Электронные оболочки
Страница 1

Когда два атома сталкиваются и вступают в реакцию, они или соединяются вместе, обобществляя свои электроны, или же вновь расходятся после перераспределения электронов. Именно это обобществление или перераспределение электронов и вызывает изменение свойств веществ, наблюдаемое при проведении химических реакций. Купить натяжной потолок полотно для натяжного потолка купить.

Кропотливое и тщательное изучение рентгеновских лучей показало, что и обобществление, и перераспределение электронов подчиняется какому-то определенному порядку, и в результате была выдвинута следующая гипотеза. Окружающие ядро атома электроны подразделяются на определенные группы и образуют так называемые электронные оболочки . Ближайшая к ядру атома оболочка получила название К-оболочка, а последующие оболочки были названы соответственно L-оболочка, M-оболочка, N-оболочка и т. д. Согласно этой гипотезе, на ближайшей к ядру оболочке могут располагаться только два электрона, на следующей L-оболочке — восемь, на M-оболочке — восемнадцать и т. д., т. е. чем дальше оболочка удалена от ядра, тем больше электронов на ней может располагаться. Например, три электрона атома лития, одиннадцать электронов атома натрия и девятнадцать электронов атома калия распределяются по электронным оболочкам в следующем порядке: Li 2, 1; Na 2, 8, 1; K 2, 8, 8, 1.

У каждого атома щелочных металлов электроны распределяются таким образом, что внешнюю оболочку занимает только один электрон. Поскольку при столкновении атомов в контакт вступают именно внешние электронные оболочки, то следует ожидать, что число электронов на внешней оболочке и определяет химическую активность элемента. Элементы с аналогичными внешними электронными оболочками имеют сходные свойства, как, например, вышеупомянутые щелочные металлы.

Рассуждая таким образом, можно сказать, что щелочноземельные элементы (магний, кальций, стронций и барий) похожи друг на друга также по этой причине: у каждого из них на внешней оболочке по два электрона. На внешних оболочках атомов галогенов (фтора, хлора, брома и йода) по семь электронов, а на внешних оболочках инертных газов (неона, аргона, криптона и ксенона) — по восемь.

Составляя периодическую таблицу, Менделеев, разумеется, сам того не зная, расположил элементы в соответствии со строением электронных оболочек их атомов.

В более тяжелых атомах, в которых число электронов все растет и растет, увеличивается число электронов на внутренних оболочках, но на внешней оболочке число электронов остается постоянным. Так, например, порядковые номера редкоземельных элементов лежат в пределах от 57 до 71 включительно. И хотя по мере продвижения по периодической таблице мы наблюдаем увеличение числа электронов на внешней оболочке, все редкоземельные элементы имеют по три электрона на внешней оболочке. Это тождество внешних оболочек объясняет, почему элементы этой группы так неожиданно оказались похожи друг на друга по свойствам.

Когда Менделеев составлял периодическую таблицу, он исходил из валентности элементов, поскольку о распределении в них электронов в то время ему еще ничего не было известно. Теперь вполне разумно было предположить, что валентность элемента определяется его электронной структурой.

Немецкий химик Рихард Абегг (1869—1910) в 1904 г. указал, что электронная структура инертных газов должна быть особенно устойчивой. Атомы инертных газов не проявляют тенденции к уменьшению или увеличению числа электронов на внешних электронных оболочках и поэтому не участвуют в химических реакциях. Можно было сделать вывод, что электронные оболочки инертных газов наиболее устойчивы, а другие атомы могут отдавать или принимать электроны, пока их электронная структура не станет такой же, как у ближайшего инертного газа.

Страницы: 1 2 3

Смотрите также

Железо и его роль
Герою знаменитого романа Даниэля Дефо повезло. Корабль, с которого он спасся, сидел на мели совсем недалеко от острова. Робинзон сумел погрузить на плот все необходимое и благополучно переп ...

От алхимии к научной химии
...

Химия сегодня
Химия - наука о веществах, изучающая их состав, строение, свойства, а также превращения веществ, на сопровождающиеся изменением состава атомных ядер. "Широко простирает химия руки с ...