Адсорбция и адсобционные равновесия

Научная литература / Адсорбция и адсобционные равновесия
Страница 7

Подставляя величину концентрации в уравнение константы, получим выражения

, св = с,

А = А¥Кс – АКс, - для жидкостей;

- для газов.

Эти выражения – уравнения изотермы адсорбции Ленгмюра. К и Кр в уравнении характеризуют энергию взаимодействия адсорбента с адсорбатом. Адсорбционное уравнение часто представляют относительно степени заполнения поверхности, т.е. как отношение А/А¥:

,

.

Экспериментальные результаты по определению изотермы адсорбции обычно обрабатывают с помощью уравнения, записанного в линейной форме;

, т.е. уравнение типа y = b + ax.

Такая линейная зависимость позволяет графически определить А¥ и К. Зная А¥, можно определить удельную поверхность адсорбента (поверхность единицы массы адсорбента):

,

где А¥ - предельная адсорбция, выражаемая числом молей адсорбата на единицу массы адсорбента;

NA – число Авогадро;

w0 – площадь, занимаемая одной молекулой адсорбата.

1. Если сà 0, тогда уравнение примет вид:

А=А¥Кс; ; А = Кгс, q =Кс,

т.е. при сà 0 уравнение Ленгмюра переходит в уравнение Генри.

2. Если сà¥, тогда А = А¥ , А/А¥ = 1. Это случай предельной адсорбции.

3. Пусть адсорбция идет из смеси компонентов, в этом случае уравнение Ленгмюра записывается следующим образом:

.

Все рассмотренные выше уравнения справедливы для мономолекулярной адсорбции на адсорбенте с энергетически эквивалентными адсорбционными центрами. Однако реальные поверхности этим свойством не обладают. Приближенной к реальности является возможность распределения адсорбционных центров по энергии. Приняв линейное распределение, Темкин

использовал формулу уравнения Ленгмюра и получил уравнение для средних степеней заполнения адсорбента.

,

где  - константа, характеризующая линейное распределение;

К0 - константа уравнения Ленгмюра, отвечающая максимальной теплоте адсорбции.

Из уравнения следует, что увеличение парциального давления (из-за увеличения концентрации) одного компонента подавляет адсорбцию другого и тем сильнее, чем больше его адсорбционная константа равновесия. Уравнение часто называют логарифмической изотермой адсорбции. Если принять экспоненциальное распределение центров по поверхности, то в области средних заполнений получается ранее найденное эмпирическим путем уравнение Фрейндлиха:

.

Прологарифмировав, получим ,

где K, n – постоянные.

Использование уравнения Фрейндлиха в логарифмической форме позволяет определить константу уравнения.

Уравнение Ленгмюра можно использовать только при адсорбции в мономолекулярном слое. Это условие выполняется при хемосорбции, физической адсорбции газов при меньшем давлении и температуре выше критической.

Страницы: 2 3 4 5 6 7 8

Смотрите также

Биологическая активность меди
Медь (лат. Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным - медь была хорошо известна египтянам еще за 4000 лет до ...

Шестая группа периодической системы
Атомы элементов VI группы характеризуются двумя различными структурами внешнего электронного слоя содержащего либо шесть, либо одного или двух электронов. К первому типу, помимо кислорода, относится ...

Элементарная биохимия
БИОХИМИЯ (биологическая химия) – биологическая наука, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения и связь этих превращений с деятельностью органо ...