Степень окисления

Под степенью окисления атома в молекуле понимается условный электрический заряд данного атома, вызванный смещением валентных электронов к более электроотрицательному атому.

При этом условии предполагается, что электроны каждой связи в моле-

куле ( или ионе ) принадлежат более электроотрицательному атому.

Степень окисления атома обозначается числом со знаком ( + ) или ( - ) . Значение положительной степени окисления элемента соответствует числу оттянутых от атома электронов + , а величина отрицательной степени окисления – числу притянутых атомом электронов - .

Для определения степени окисления атомов в свободном состоянии и в химических соединениях следует руководствоваться данными ОЭО ( табл. 1 ) и следующим :

1. Атомы кислорода в соединениях могут проявлять как целые, так и дробные степени окисления. Например, степень окисления кислорода в основном равна (-2), в H2O2 ( -1 ), в KO2 и КО3 – соответственно (-1/2 и –1/3 ) , а во фторокислороде ОF2- (+2 ). Для водорода характерна степень окисления +1, но встречается и –1 ( в гидридах металлов 2. Степень окисления атомов в простых ионных соединениях по знаку м величине равна электрическому заряду иона. Например, в хлориде калия степень окисления калия равна +1, а хлора – (-1).

3.Если молекула образована за счёт ковалентной или ионно-ковалентной связи (например, SO2,NH3, HCl,HNO3) степень окисления более электроотрицательного атома обозначается со знаком -, а менее электроотрицательного атома – со знаком +. Для понимания определения степени окисления элементов ряда соединений целесообразно писать их графические формулы. Так, в соединениях азота NH3, N2H4, NH2OH, HNO2, HNO3 степени окисления азота соответственно равны:-3, -2, -1, +3, +5. Это наглядно видно из их графических формул. В случае наличия химической связи между одинаковыми атомами (N3H4)электронную пару надо поделить между атомами, которые она связывает. Далее необходимо подсчитать число электронов у каждого из них. Разность между числом электронов у свободного атома на внешнем уровне и найденным числом даст степень окисления атома.

4.В отличие от рассмотренных выше молекул в молекулах, состоящих из одинаковых атомов (H2, Cl2, Br2, N2 и др. ), степень окисления атомов равна нулю, так как здесь не имеет места одностороннее оттягивание общих пар электронов к какому-либо одному атому. Например, в молекулах водорода ( Н : Н ) и хлора ( :Cl : Cl: ) степень окисления равна нулю, но ковалентность их соответствует единице по количеству электронных пар.

5.В большинстве органических соединений химические связи имеют слабо вы-раженный полярный характер: присоединение к атомам углерода, составляющим скелет органических соединений ( например, фтора, кислорода, хлора, азота ), приводит к изменению электронной плотности между атомами углерода и указанных элементов и, тем самым, к увеличению полярности связи между ними. Степень окисления атомов в них определяется так же, как и в ковалентных полярных соединениях.

6,Металлы в элементарном состоянии имеют равномерное распределение электронной плотности вокруг ядра, поэтому степень окисления их принимается равной нулю.

7.В любом ионе алгебраическая сумма степеней окисления всех атомов равняется заряду иона, а сумма степеней окисления всех атомов, входящих в электронейтральное соединение, - нулю.

8.Для комплексных соединений обычно указывают степень окисления центрального атома. Например, в К3 ( Fe ( CN6)) и (Ni (NH3)6 ) SO4 степень окисления железа равна +3, а никеля – (+2 ). Следует подчеркнуть, что понятие степени окисления является формальным и обычно не характеризует действительного состояния рассматриваемого атома в соединении. Во многих случаях степень окисления не равна валентности данного элемента. Например, в метане (СН4), метиловом спирте (СН3ОН), формальдегиде (СН2О), муравьиной кислоте (НСООН), и углекислом газе (СО2) степень окисления углерода равна соответственно:+4, -2, 0, +2, +4, в то время как валентность углерода во всех этих соединениях равна четырем. Понятие «степень окисления» особенно широко используется при изучении окислительно-восстановительных реакций.

Смотрите также

Синтез диэтилового эфира малоновой кислоты. Свойства и основные методы получения сложных эфиров
...

Планирование дискриминирующих экспериментов
Для дискриминации гипотез используют эксперименты различного типа. Химические эксперименты. Различные тестовые реакции часто позволяют определить вероятность участия того или иного вещес ...

Ртуть
Ртуть (лат. Hudrargyrum) – химический элемент 2 группы периодической системы Менделеева; атомный номер 80, атомная масса 200,59. Ртуть – элемент редкий и рассеянный, его содержание примерно ...