Кинетика и механизм неорганических реакций.

Научная литература / Синтез, кинетика, термодимика / Кинетика и механизм неорганических реакций.
Страница 1

С кинетической точки зрения неорганические реакции можно подразделить на две группы:

а) реакции, включающие разрыв и образование ковалентных связей, и

б) реакции, сопровождающиеся простым переносом элек­тронов,

Кроме того, в твердом состоянии реакции протекают еще при перемещении ионов из одной решетки в другую по дефектам ре­шетки. Первый класс реакций можно подразделить на реакции, подоб­ные термическому разложению, рассмотрен­ному ранее, и реакции замещения в координационных соедине­ниях, в которых координированный лиганд замещается другим лигандом из раствора. В общем случае реакции замещения по своему характеру нуклеофильные, так как замещаемый лиганд уносит электронную пару, ранее образовывавшую -связь ме­талл -лиганд, а замещающий лиганд приносит пару электронов и поэтому занимает положение с низкой электронной плотно­стью. По аналогии с органическими соединениями эти процессы обозначаются как SN-процессы (нуклеофильное замещение). Возможны два основных пути протекания реакции в зависимо­сти от того, происходит ли предварительная диссоциация реаги­рующего комплекса (мономолекулярный процесс SN1)

или важной стадией является бимолекулярный процесс замеще­ния, скорость которого зависит от концентрации как комплекса, так и замещающего лиганда (SN2), т. е.

Следовательно, SN1 -механизм должен привести к активирован­ному комплексу, в котором ион металла имеет меньшее коорди­национное число, чем в исходном комплексе, тогда как SN2 -механизм требует увеличения числа присоединенных лигандов в переходном состоянии. Необходимо далее рассмотреть разность энергии между реагирующим комплексом и этими переходными состояниями. Если в комплексе нет -связей металл -лиганд, то величину скорости реакции можно предсказать, предполагая электростатическое взаимодействие между ионами металла и лигандами.

Наличие двух «вакантных» гране -положении в комплексе с кон­фигурацией плоского квадрата позволяет предположить, что в этом случае более вероятен SN2-механизм. В действительности, однако, почти наверное эти транс- положения не будут свобод­ными, и если нет других лигандов, то они будут заняты моле­кулами растворителя. Эти молекулы растворителя находятся на большем расстоянии, чем лиганды в плоскости квадрата. По­этому комплекс будет вести себя во многих отношениях так, как если бы он имел конфигурацию плоского квадрата. Две коор­динированные молекулы растворителя очень подвижны и легко могут быть замещены лигандами из раствора. Это облегчает замещение наиболее подвижного лиганда в плоскости квадрата, например

Здесь S -молекула растворителя, а рисунок не представляет собой никакой частной стереохимической конфигурации пяти­координационного переходного состояния. К этому переходному состоянию легко присоединяется нуклеофильный реагент У; од­новременно комплекс теряет молекулы растворителя и обра­зуется новый комплекс [ML3Y]. Экспериментально было найдено, что уравнение для скорости реакции типа

[ЭIIX4] + Y→ [ЭIIX3Y] + 3

имеет вид

скорость = k1 [комплекс] + k2 [комплекс] [Y]

где k1 -константа скорости реакции первого порядка, которую относят к процессу с SN2 -механизмом; в этом процессе раство­ритель -нуклеофильная атакующая единица, k2 -константа скорости реакции второго порядка в процессе с SN2 -механизмом, в котором нуклеофильной единицей является Y. Если рас­положить нуклеофильные реагенты в порядке возрастания k1 или k2 то их реакционная способность по отношению к элементу с положительной степенью окисления II будет увеличиваться в ряду:

H2O ~ OH- < Cl- < Br- ~ NH3 ~ олефин < ру < NO-2 < N-3 < I- ~ SCN- ~ PR3

Очевидно, что по отношению к платине со степенью окисления II большую реакционную способность имеют те лиганды, которые могут быть как σ -донорами, так и π -акцепторами. Платина, за­нимающая место в конце третьего ряда переходных элементов, имеет несвязанные электроны, необходимые для образования π -связей металл –лиганд. Приведенный выше порядок лигандов определяет также повы­шение реакционной способности других лигандов, находящихся по отношению к первым в транс -положении. Это явление назы­вают транс -влиянием. Так, в реакции

Страницы: 1 2

Смотрите также

Жесткость воды и ее устранение
В пещерах спелеологи встречаются с красивейшими известковыми образованьями – свешивающимися со сводов сталактитами и растущими вверх сталагмитами. С точки зрения химии, возникновение этих у ...

Экспериментальные данные и закономерности спектров соединения хромофоров
Рассмотрим теперь, как влияет присутствие в молекуле различных хромофоров и окружающей среды (растворителя) на спектр соединения. Как известно, во многих случаях в электронных спектрах к ...

Влияние технологических добавок на структуру и свойства резин
...