Кинетический анализ реакций синтеза.

Научная литература / Синтез, кинетика, термодимика / Кинетический анализ реакций синтеза.
Страница 2

2Fr2+· aq + Н2О2 → 2Fe3+ · aq + 2OH-

Показано, что выражение для скорости этой реакции

т. е. реакция имеет второй порядок. Схему протекания реакции лучше всего можно представить следующими стадиями:

Fe2+· aq + Н2О2 Fe3+ • ао+ОН" +ОН

и

Fe2+ · aq + OH- Fe3+· aq + OH-

где

k1= 60 л/моль · сек и k2 = 60 000 л/моль · сек

Так как суммарная реакция состоит из двух последовательных бимолекулярных стадий, то какую -либо молекулярность стехиометрическому уравнению приписать нельзя. Эта схема также иллюстрирует тот факт, что скорость всего процесса определяет самая медленная стадия, так как константа скорости суммар­ного процесса - это константа скорости первой, более медлен­ной бимолекулярной стадии (т. е. k = k1). Вторую стадию в этой схеме можно использовать как пример реакции с псевдопоряд­ком.

Для объяснения экспериментальных данных по механизмам реакций широко используют явление изотопного замещения. Так, образец, содержащий радиоактивные ионы Fe2+, можно обработать нерадиоактивным образцом, содержащим ионы Fe3+, и количество полученных радиоактивных ионов Fe3+ можно из­мерить в зависимости от времени. Уравнение Маккея

связывает скорость реакции R (т.е. скорость обмена радиоак­тивностью) с начальными концентрациями a и b реагентов и из­меренными радиоактивностями х и первоначально неактив­ной формы (в данном случае Fe3+) в моменты времени t и. Поэтому такие реакции являются идеальными для исследования влияния температуры, концентрации и других факторов на ско­рость реакции.

Таким образом, истинный механизм химических реакций включает мономолекулярные, бимолекулярные или тримолекулярные стадии, по которым реакция идет самопроизвольно при столкновениях между двумя или тремя молекулами. Вероят­ность одновременного столкновения четырех или более молекул настолько мала, что ею можно пренебречь. Однако можно легко показать, что не все столкновения приводят к химическому взаимодействию. Основными ограничениями, которые лимити­руют эффективность столкновений, являются:

а) ориентационные эффекты; очевидно, сложные молекулы могут вступать в реакцию только тогда, когда они соударяются в определенных положениях и в соприкосновение приходят реакционноспособные связи или неподеленные пары электронов. Стерический фактор p показывает, какая часть общего числа соударений приходится на столкновения молекул с такой ориен­тацией;

б) энергия активации; рассмотрим простую реакцию в газо­вой фазе

Расстояние H -I в молекуле йодистого водорода равно 1,61 Å и диаметр молекулы равен 3,5 Å.Этот диаметр также должен быть равен расстоянию между двумя атомами водорода или двумя атомами йода в соударяющихся молекулах (удвоенный вандерваальсов радиус; разд. 4.2). Естественно, это расстояние велико по сравнению с расстояниями в молекулах водорода (0,74 Å) и йода (2,67 Å). Следовательно, соударения должны обладать достаточной энергией, чтобы вызвать сжатие молекул НШ, после чего составляющие атомы имели бы возможность подойти друг к другу достаточно близко и вызвать распад этих молекул на водород и йод. Необходимую для этого энергию на­зывают энергией активации реакции, и только те столкновения, которые имеют это минимальное количество энергии, будут эф­фективными. Часть таких столкновений определяется выраже­нием , где Еa -энергия активации столкновений на один моль. Константа скорости определяется уравнением Аррениуса

Страницы: 1 2 3

Смотрите также

Витамины
...

Охрана труда сегодня, как никогда, актуальна
Опыт крупнейших мировых компаний показывает, что охрану труда высшие руководители считают одним из главных приоритетов. Так, из десятков показателей деятельности предприятия охрану труда и здоровья св ...

Электрохимическое внедрение и анодное растворение лития на электродах из интеркалированных углеграфитовых материалов
...