Дифракционные методы исследования структур.

Полезные материалы / Поиск структурно-химической информации в Internet / Дифракционные методы исследования структур.

а) Роль возбудителя дифракционных эффектов в кристалле могут выполнять рентгеновские лучи, поток нейтронов или поток электронов. Соответственно существуют три дифракционных метода структурного анализа: рентгеноструктурный, нейтронографический и электронографический.

По общему принципу они родственны(основанные на эффекте дифракции), но каждый имеет свои специфические черты и особенности, т.к. характер взаимодействия волн разной природы с атомами кристалла различен. Рентгеновские лучи рассеиваются электронами атомов, поток нейтронов-ядрами, а поток электронов-электромагнитным полем ядра и электронов.

По целому ряду принципиальных и технических особенностей рентгеноструктурный анализ наиболее эффективен для практического исследования кристаллической структуры.

Рентгеноструктурный анализ появился в 1912г., когда Лауэ и его сотрудники открыли эффект дифракции рентгеновских лучей при их прохождении через кристалл.

Это явление аналогично дифракции световых лучей, пропускаемых через штриховую решётку. Пучок монохроматических лучей, направленных на пластинку с системой равноотстоящих отверстий, распространяется за пластинкой по ряду избранных(дискретных) направлений. Происходит это вследствие наложения сферических волн, исходящих из каждого отверстия. В некотором произвольном направлении эти волны не совпадают по фазе и в совокупности взаимно гасят друг друга. Но если разность фаз лучей , исходящих из соседних отверстий, составит целое число периодов, то они не погасят, а взаимно усилят друг друга. Этому условию и удовлетворяют дифракционные лучи.

Кристалл является периодической атомной структурой. Если использовать такие лучи, которые рассеиваются атомами и имеют длину волны, близкую к межатомным расстояниям, то должен наблюдаться аналогичный эффект. Периоды повторяемости решётки кристалла лежат обычно в пределах 35-130Е(1Е=0.1нм). Поэтому для дифракции на кристалле требуется излучение с длинной волны несколько короче, иначе будет наблюдаться малое число отражений.

Общую схему рентгеноструктурного анализа можно сравнить с работой микроскопа. Роль объектива, разлагающего в спектр лучи, рассеянные предметом, играет рентгеновская камера(дифрактометр) с исследуемым кристаллом: первичный пучок лучей, создаваемый рентгеновским аппаратом, разлагается кристаллом в дифракционный спектр. Роль окуляра, собирающего лучи спектра в увеличенное изображение предмета, играет ЭВМ: путем математической обработки дифракционных характеристик-направлений и интенсивности дифракционных лучей, она воссоздаёт увеличенное изображение распределения электронной плотности по элементарной ячейке кристалла; позиции максимумов плотности отвечают размещению атомов.

Смотрите также

Современные и перспективные требования  и технологии к качеству тяжелых моторных и судового маловязкого топлива
  Настоящие технические условия распространяются на топливо маловязкое судовое получаемое из дистиллятных фракций прямой перегонки и вторичной переработки нефти. Топливо маловязкое судов ...

Крашение натурального шелка бромакриламидными красителями
...

Железо и его роль
Железо - (лат. Ferrum), Fe (читается «феррум»), химический элемент, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не уста ...