Основы оптической спектроскопии
Полезные материалы / Основы оптической спектроскопии
Страница 2

(1)

Здесь h – постоянная Планка, равная 6,626×10-34 Дж с.

Что происходит при поглощении молекулой кванта энергии?

Мы видели, что молекула, находящаяся в основном электронном состоянии переходит в возбужденное состояние. Существенно, что невозбужденная молекула находится также и на основном колебательном уровне. Однако при поглощении кванта света происходит не только переход на более высокий электронный уровень, но молекула может одновременно переходить и на более высокие колебательные уровни. Схема этого процесса показана на следующем рисунке (рис. 7).

Из схемы, приведенной на следующем рисунке (рис. 8) видно, что переход молекулы при электронном возбуждении на все более высокие колебательные уровни приводит к возникновению спектра с выраженной колебательной структурой.

При регистрации спектров растворов могут быть получены спектры как с колебательной структурой, так и без нее (рис. 9). Отсутствие структуры может быть связано как со свойствами самой молекулы, так и со свойствами среды, температурой.

Характерный спектр бензола позволяет обнаружить его присутствие в различных растворителях даже в следовых количествах. Например, для абсолютировании этанола часто используется ректификация его с добавкой бензола, так как бензол дает с водой азеотроп, который и отделяется от этанола. Однако в УФ спектре такого этанола всегда видна картина, показанная на этом рисунке, что доказывает присутствие в нем следов бензола.

Из формулы (1) видно, что длина волны обратно пропорциональна, а волновое число прямо пропорционально энергии излучения. Т.е. с ростом энергии излучения соответствующая длина волны уменьшается, а волновое число возрастает пропорционально энергии. Поэтому многие современные приборы сконструированы таким образом, что регистрируемые спектры представляют собой функцию волнового числа, а не длины волны.

Рассмотрим теперь принципиальные схемы спектрофотометров и принципы их функционирования. Спектрофотометры могут быть диспергирующими и недиспергирующими. Диспергирующий спектрофотометр состоит из следущих основных частей: 1. Источник излучения; 2. Монохроматор с диспергирующим элементом (призмой или диффракционной решеткой); 3. Кюветного отделения, куда помещается исследуемый образец; 4. Приемника излучения и 5. Регистрирующего устройства.

На следующем рисунке (Рис. 10) приведена схема простейшего однолучевого спектрофотометра.

Запись результатов производится вручную путем считывания показаний регистрирующего прибора (стрелочного или цифрового) для каждого значения длины волны.

Следующий этап развития – это двухлучевые регистрирующие спектрофотометры, автоматически записывающие спектры в заданном интервале длин волн или волновых чисел. оптическая схема такого прибора показана на следующем рисунке. (Рис. 10). При работе такого прибора происходит автоматическое сканирование спектра в заданном диапазоне. Результаты фиксируются на самописце или запоминаются компьютером. Скорость записи полного спектра в диапазоне длин волн от 200 до 900 нм или в шкале волновых чисел от 50000 до 11000 см-1 занимает несколько минут в зависимости от скорости сканирования. Двухлучевая схема обладает рядом преимуществ. Так, компенсируются любые флуктуации интенсивности источника излучения, повышается воспроизводимость получаемых результатов.

Наконец, в последнее время произошел возврат к несканирующим приборам, в которых в качестве приемника излучения используется так называемая диодная матрица. Это тоже однолучевые приборы. Оптическая схема такого прибора представлена на следующем рисунке (Рис. 11). Продолжительность регистрации полного спектра во всем диапазоне не превышает 1 секунды.

Особенностью спектров, получаемых на таких приборах, является их прерывность. Это значит, что значения оптической плотности изменяются не непрерывно в определенном интервале длин волн или волновых чисел, а скачкообразно, с заранее заданным шагом. Принцип получения такого спектра на спектрофотометре с диодной матрицей показан на рис. 12. Точно такой же вид имеет спектр, записанный на компьютере, т.е. после оцифровки. При этом чем меньше шаг изменения длины волны или волнового числа при регистрации спектра, тем выше, при прочих равных условиях, точность результата.

Страницы: 1 2 3

Смотрите также

Первичная подготовка нефти
...

Влияние химических веществ на здоровье человека
Международное изучение последствий подвергания диоксинам и неопухолевой смертности рабочих по производству и распылению кислородо- и фенолосодержащих гербицидов и хлорофенолов. ...

Супрамолекулярная химия
Проанализировано развитие области науки, называемой супрамолекулярной химией. Даны основные определения и понятия этой дисциплины. В историческом контексте рассмотрены исследования, заложивш ...