Линейное движение на ограниченном интервале (потенциальный ящик).

Полезные материалы / Основы квантовой механики и ее значение для химии / Линейное движение на ограниченном интервале (потенциальный ящик).

Эта задача простейшая. Частица, движущаяся на прямолинейном интервале между двумя идеально отражающими стенками, претерпевает абсолютно упругие удары об эти стенки и отражается, изменяя лишь направление вектора скорости (импульса). Модуль же сохраняется. Возникает поступательное строго периодическое движение с постоянной скоростью. Эта модель предельно идеализированная.

Полная энергия этой частицы содержит только кинетическую составляющую. Потенциальная энергия для простоты принята равной нулю. На отрезке пути укладывается целое число полуволн Де-Бройля. Это условие, из которого вытекает квантование (дискретность) модуля импульса и энергии.

Дискретные значения полной энергии называются энергетическими уровнями или просто уровнями. Множество уровней называется энергетическим спектром данной системы. Графическое изображение энергетических уровней в масштабе называется энергетической диаграммой.

Квантование энергии и энергетическая диаграмма частицы в одномерном "ящике" получаются из следующих вычислений.

Смотрите также

Особенности химической формы развития материи
Окружающий нас материальный мир един и вместе с тем много­образен. Опираясь на данные частных наук, научная философия изуча­ет наиболее общую структуру мира. С позиций научной философии реа ...

Химия в решении сырьевой проблемы
В наши дни, когда человеческое развитие достигло высот, такие проблемы, как экология, продовольствие, энергия заставляют задуматься о будующем.   Как мне кажется, эта тема наиболее актуа ...

Кобальт - химический элемент
...