Линейное движение на ограниченном интервале (потенциальный ящик).
Эта задача простейшая. Частица, движущаяся на прямолинейном интервале между двумя идеально отражающими стенками, претерпевает абсолютно упругие удары об эти стенки и отражается, изменяя лишь направление вектора скорости (импульса). Модуль же сохраняется. Возникает поступательное строго периодическое движение с постоянной скоростью. Эта модель предельно идеализированная.
Полная энергия этой частицы содержит только кинетическую составляющую. Потенциальная энергия для простоты принята равной нулю. На отрезке пути укладывается целое число полуволн Де-Бройля. Это условие, из которого вытекает квантование (дискретность) модуля импульса и энергии.
Дискретные значения полной энергии называются энергетическими уровнями или просто уровнями. Множество уровней называется энергетическим спектром данной системы. Графическое изображение энергетических уровней в масштабе называется энергетической диаграммой.
Квантование энергии и энергетическая диаграмма частицы в одномерном "ящике" получаются из следующих вычислений.
Смотрите также
Галлий и его соединения
ГАЛЛИЙ, (лат. Gallium) Ga
...
Определение массы полимера криоскопическим способом
Мы
выбрали тему – «Определение молекулярной массы вещества криоскопическим
методом». Изучая высокомолекулярные соединения, мы отметили, что их важной
характеристикой является молекулярная м ...
