Современные квантово-химические представления о валентности
Начиная с 30-х гг. 20 в. представления о природе и характере В. постоянно расширялись и углублялись, параллельно с расширением и углублением представлений о химической связи. Существенный прогресс был достигнут в 1927, когда В. Гейтлер и Ф. Лондон выполнили первый количественный квантово-химический расчёт молекулы H2. В подтверждение гипотезы Льюиса было показано, что химическая связь в H2 действительно осуществляется парой электронов и является результатом электростатического (кулоновского) взаимодействия электронов и ядер. Образование молекулы из атомов энергетически выгодно, если спины электронов направлены в противоположные стороны, когда притяжение электронов к ядру (остову) чужих атомов больше энергии отталкивания между электронами и между ядрами. Параллельная ориентация спинов приводит к отталкиванию атомов друг от друга.
В дальнейшем идеи Гейтлера - Лондона были распространены на многоатомные молекулы, что привело к созданию теории локализованных пар. Согласно этой теории, общая картина распределения электронной плотности в молекулах типа MXk складывается из независимых фрагментов М - X, связь в каждом из которых осуществлена парой электронов (по одному от центрального атома М и от заместителя X), локализованной между двумя атомами М и X. Согласно этой теории В. не просто связывается с наличием неспаренного электрона, но и характеризуется тем, в каком состоянии этот электрон находится или, в терминах теории химической связи, какую атомную орбиталь (АО) он занимает. АО разного типа имеют различную ориентацию в пространстве: s-орбиталь сферически симметрична, орбитали px, ру и pz вытянуты вдоль трёх взаимно перпендикулярных осей и т.д. Электроны атомов в молекулах в общем случае описываются "гибридными" (смешанными) орбиталями, в которые, в принципе, могут входить любые валентные АО в разных количественных соотношениях и у которых электронные облака сконцентрированы вдоль направлений связей М - Х значительно сильнее, чем у простых АО. Состояние валентных электронов, а следовательно и свойства В. атома М, в значительной мере определяют закономерности в свойствах молекул MXk для широкого круга заместителей X. Наиболее плодотворными оказались концепции направленных В. и валентных состояний атомов, позволившие объяснить и обобщить ряд закономерностей в геометрическом строении и энергиях химических связей органических и неорганических молекул.
В теории направленных валентностей предполагается, что связи М - Х в молекулах MXk тем прочнее, чем больше перекрывание электронных облаков гибридных орбиталей атомов М и X, то есть чем сильнее эти облака сконцентрированы вдоль направлений М - X. Поэтому молекулы MXk должны иметь такое геометрическое строение, при котором плотность гибридных АО вдоль направлений связей максимальна, а валентные углы Х - М - Х совпадают с углами между направлениями гибридных АО центрального атома. Например, в молекулах типа PH3 и SH2 связи осуществляются почти чистыми 3р-орбиталями центральных атомов, и поэтому PH3 и SH2 имеют пирамидальное и угловое строение с углами Н - М - Н ~ 90?. В дигалогенидах Zn, Cd, Hg, двуокисях, дисульфидах и др. соединениях углерода и его аналогов связи образуются за счёт sp-гибридных АО с валентным углом 180?, так что все молекулы типа CdCl2, Hg (CH3)2, HgI2, CS2, SiO2 и др. в парах имеют линейное строение. В случае Са, Sr, Вa, Ra и переходных металлов III-VI групп смешанная гибридизация sp + sd приводит к тому, что молекулы типа CaF2, SrF2, BaHal2, TiO2, HfO2, TaO2, ThO2, UO2 и др. имеют угловое строение.
С проблемой В. тесно связано приближённое понятие валентного состояния атома- гипотетического состояния, в котором находится атом в молекуле. Оно характеризуется валентной конфигурацией, то есть типом и числом заполненных и пустых валентных АО; их гибридизацией, воспроизводящей геометрическое строение ближайшего окружения рассматриваемого атома; числом электронов (в теории локализованных пар - это целое число: 2, 1 или 0), заселяющих каждую из гибридных АО, и относительной ориентацией спинов электронов. Например, в молекуле метана CH4 атом С имеет валентную конфигурацию 2s2p3 с четырьмя тетрагональными sp3-гибридными орбиталями (te), направленными к вершинам тетраэдра, каждая из которых заселена одним электроном с неопределенно ориентированным спином, осуществляющим одну гайтлер-лондоновскую связь с соответствующим атомом Н. Как правило, валентное состояние атома в молекуле не совпадает с основным состоянием изолированного атома. Так, у углерода и его аналогов основное может быть лишь двухвалентным. У всех атомов II группы периодической системы основное состояние s2 вообще не может быть валентным, и для образования молекул типа ZnCl и ZnCl2 необходимо возбуждение s-электрона на ближайший пустой р-уровень. Энергия возбуждения валентного состояния из основного состояния для разных атомов различна и может достигать нескольких сотен ккал/моль, давая существенный вклад в общий энергетический баланс образования молекул из атомов. В случае Zn, Cd и Hg возбуждение s ? р происходит при присоединении первого атома галогена и требует значительных затрат энергии (90-120 ккал/моль), поэтому энергия разрыва связи М - Hal в двухатомных молекулах MHal значительно меньше, чем связи HalM - Hal в трёхатомных молекулах MHal2 у Ca, Sr, Вa, Ra затраты на возбуждение s ? р или s ? d значительно меньше (30-50 ккал/моль), и здесь энергии разрыва связей в молекулах галогенидов гораздо ближе друг другу.
Смотрите также
Плотность жидкости при нормальной температуре кипения
...
Выделение белков
Выделение практически чистого индивидуального белка (в таких
случаях нередко употребляют не вполне удачный термин "гомогенный
белок") — необходимая предпосылка для изучения его стр ...
Третья группа периодической системы
Атомы элементов данной группы содержат во внешнем слое
максимально по три электрона. Поэтому тенденция к дальнейшему присоединению
электронов (с пополнением внешнего слоя до октета) не может быть д ...