7. Понятие ДЭС. Модельные представления о строении ДЭС на границе раздела фаз
Теория Гельмгольца
позволила объяснить ход электрокапиллярной кривой, рассчитать величину дифференциальной емкости ДЭС, хорошо совпадающую с экспериментально полученными данными. Наилучшая сходимость была получена для концентрированных растворов элементов, однако данная теория не объясняла зависимость плотности заряда и дифференциальной емкости ДЭС от состава электролита и концентрации компонента.
Недостатки теории Гельмгольца:
1) не учитывалось тепловое движение ионов в растворе;
2) не учитывался размер ионов;
3) не рассматривались процессы адсорбции на границе раздела фаз (электрод – электролит).
Ее применяют только к концентрированным растворам, не содержащим поверхностно-активные вещества (ПАВ).
Б. Гуи
, Д. Чапмен
учли тепловое движение в растворах электролитов.
Эта теория позволяет рассчитать плотность ρ заряда ДЭС и величину дифференциальной емкости С , они учли влияние концентрации, но рассчитанные значения дифференциальной емкости С, но они меньше сходятся с экспериментально полученными результатами. Теория Гуи, Чапмена
применима к разбавленным растворам электролитов.
Недостатки:
1) не учитываются размеры ионов;
2) не учитывается явление адсорбции на границе раздела фаз.
В. Штерн
учел, что в электролитах наблюдается электростатическое взаимодействие между ионами, тепловое движение компонентов электролита и возможное специфическое взаимодействие компонентов электролита с поверхностью электрода.
Он соединил теорию Гельмгольца с теорией Гуи, Чапмен, в результате ДЭС представлялся состоящим из двух частей:
1) плотной части Гельмгольца;
2) диффузной части по модели Гуи, Чапмена.
За счет адсорбции ПА компонента может происходить перезаряд поверхности. Штерн
считал, что адсорбция происходит на границе плотной и диффузной части ДЭС. Эта граница называется плоскостью Гельмгольца.
Теория Штерна
легла в основу современных представлений и развивалась в работах Грема , Фрумкина , Эршлера , Есина
и др.
Недостатки:
1) не учитывал дискретность зарядов;
2) величина емкости, рассчитанная по модельным представлениям Штерна, не соответствовала экспериментально полученным результатам.
Г. Греем
рассмотрел возможность адсорбции ПА анионов внутри плотной части ДЭС, он ввел понятие внутренней и внешней плоскости Гельмгольца
.
Адсорбция анионов происходит на внутренней плоскости Гельмгольца.
Недостаток:
рассматривал адсорбцию только анионов и не учитывал дискретность зарядов.
О. А. Есин
рассмотрел дискретность зарядов и показал, что ионы, образующие внутреннюю и внешнюю плоскости Гельмгольца, взаимодействуют между собой, образуя диполи.
Указанное взаимодействие влияет на величину диффузной емкости с ДЭС. О. А. Есин
рассмотрел возможность адсорбции на внутренней плоскости Гельмгольца как катионов, так и анионов.
Смотрите также
Третья группа периодической системы
Атомы элементов данной группы содержат во внешнем слое
максимально по три электрона. Поэтому тенденция к дальнейшему присоединению
электронов (с пополнением внешнего слоя до октета) не может быть д ...
Синтез и анализ ХТС в производстве гидроксида натрия и хлора из водного раствора хлорида натрия
Химическая наука и химическая промышленность в
настоящее время являются одними из ведущих отраслей, которые обеспечивают
научно технический прогресс в обществе. Интенсивный рост данной отрас ...
Кванты излучения и переходы. Уровни энергии и спектральные переходы в атоме водорода
Квантовая
механика изучает объекты с размерами от 10-7¸10-8
см до
10-16см.
Её
разделы, посвящённые строению вещества:
Квантовая
химия, изучает электронное строение атомно-мо ...