Как Евклид доказал существование бесконечного количества простых чисел?

Книги по химии / Новейшая книга фактов. Физика, химия и техника / Разное / Как Евклид доказал существование бесконечного количества простых чисел?

Древнегреческий математик Евклид (III век до нашей эры), более известный своей геометрией, доказал также одно из фундаментальных положений теории чисел – бесконечность количества простых чисел. При доказательстве Евклид исходил от обратного и рассуждал так. Предположим, что количество простых чисел конечно. Тогда можно составить их полный перечень. Рассмотрим число, которое на единицу больше произведения всех этих чисел, то есть 2 х 3 х 5 х 7 х 11 х… х (последнее число из полного перечня простых чисел) + 1. На какое бы из простых чисел мы ни разделили это число, в остатке всегда будет 1. Таким образом, это число также является простым, причем не вошедшим в перечень. Но ведь данный перечень предполагался полным, а следовательно, налицо противоречие. Значит, предположение о конечности количества простых чисел неправомерно – количество простых чисел бесконечно.

Смотрите также

Коррозия и защита металлов
...

Хитин-глюкановый комплекс грибного происхождения. Состав, свойства, модификации
Биополимеры хитин и хитозан обратили на себя внимание ученых почти 200 лет назад. Хитин был открыт в 1811 г. (Н. Braconnot, A. Odier), а хитозан в 1859 году (С. Rouget), хотя свое нынешнее ...

Роль химии в создании сверхчистых материалов
...