Фотоэлектрический эффект
Оставалось установить, существует ли какая-либо связь между электроном и атомом. Итак, электрон — это частица электричества, атом — частица вещества; и тот и другой могут быть лишенными внутренней структуры конечными частицами, совершенно независимыми друг от друга. И тем не менее мало кто сомневался в том, что какая-то связь между атомом и электроном существует.
В 80-х годах XIX в. Аррениус разработал теорию ионной диссоциации (см. гл. 9). Объясняя поведение ионов, он исходил из того, что ионы — это электрически заряженные атомы или группы атомов. В то время большинству химиков такое объяснение показалось абсурдным, но впоследствии выяснилось, что оно имеет глубокий смысл.
Если электрон присоединится к атому хлора, то при этом получится атом хлора, несущий единичный отрицательный заряд, т. е. образуется ион хлора (хлорид-ион ). Если к группе атомов, состоящей из атома серы и четырех атомов кислорода, присоединятся два электрона, то в результате получится сульфат-ион , несущий двойной отрицательный заряд, и т. д. Таким образом можно легко объяснить причины образования всех отрицательно заряженных ионов.
Но как образуются положительно заряженные ионы, например ион натрия ? Ион натрия — это атом натрия, несущий единичный положительный заряд. Никакими данными о существовании положительно заряженной частицы, аналогичной электрону, исследователи того времени не располагали. Поэтому оставалось допустить, что положительный заряд может создаваться в результате ухода одного или двух электронов из атома. Иными словами, эти один или два электрона должны быть как бы частью самого атома!
Это допущение нарушало все привычные представления, и тем не менее оно было, как показал в 1888 г. немецкий физик Генрих Рудольф Герц (1857—1894), вполне вероятным.
В 1886—1887 гг. Герц, пропуская электрическую искру через воздушный зазор между двумя электродами (так называемый искровой промежуток), обнаружил, что при облучении катода ультрафиолетовым светом искра возникала легче. Это и другие подобные явления, наблюдаемые при освещении металлов светом, как было установлено впоследствии, обусловлены фотоэлектрическим эффектом [112].
В 1902 г. немецкий физик Филипп Эдуард Антон Ленард (1862—1947), работавший раньше ассистентом в лаборатории Герца, показал, что фотоэлектрический эффект вызывается эмиссией электронов из металла.
Фотоэлектрический эффект характерен для многих металлов, причем металлы испускают электроны под действием света даже в отсутствие электрического тока или электрического заряда в непосредственной близости от них. Этот факт дал повод предполагать, что атомы металлов (а возможно, и атомы вообще) содержат электроны.
Однако в обычном состоянии атомы не несут электрического заряда. Поэтому если атомы содержат отрицательно заряженные электроны, они должны содержать и положительно заряженные частицы, чей положительный заряд компенсирует отрицательный заряд электронов. Ленард полагал, что атомы могут представлять собой скопление как отрицательно, так и положительно заряженных частиц, различающихся только зарядом. Такое предположение казалось совершенно невероятным — почему в таком случае атом никогда не испускает положительно заряженных частиц? И почему он всегда испускает электроны и только электроны?
Пытаясь решить этот вопрос, Дж. Дж. Томсон предположил, что атом представляет собой твердый шар из положительно заряженного вещества, в который, как изюминки в пироге, вкраплены отрицательно заряженные электроны. В обычном атоме отрицательный заряд электронов полностью нейтрализован положительным зарядом самого атома. В результате присоединения дополнительных электронов атом получает отрицательный заряд, а в результате потери нескольких первоначальных электронов — положительный. Однако это представление Томсона поддержки не получило. Хотя положительно заряженные частицы, адекватные электронам, в первые десятилетия XX в. оставались неизвестными, положительно заряженные частицы, правда другого вида, открыты были.
Смотрите также
Выделение химических реагентов из аммиачного варочного раствора в процессе производства целлюлозы
В процессе получения целлюлозы по бисульфитно-аммиачному
методу измельченную древесину вываривают с бисульфитом аммония. Удаление
отработанных аммиачно-бисульфитных растворов представляет се ...
Результаты ТД расчета и экспериментального исследования
системы Аl - АГСВ - каталитические
добавки
В данной главе
представлены данные термодинамического расчета характеристик базовых систем и
экспериментальные характеристики зажигания и горения исследуемых систем. ...
Ртутно-цинковые элементы
Ртутно-цинковые элементы питания используются
для автономного питания в контрольно-измерительных приборах, дозиметрической
аппаратуре, регистрирующих измерителях напряжения, слуховых аппарат ...