Применение сурьмы.
Разнообразна “деятельность” и соединений сурьмы. В различных областях промышленности применяют трёхокись сурьмы, сульфиды и хлориды. Так трёхокись сурьмы (Sb2O3) применяется главным образом как пигмент для красок, глушитель для эмали, протрава в текстильной промышленности, в производстве невозгораемых тканей и красок, её используют также для изготовления оптического (просветлённого) стекла.
Сурьма пятиокись (Sb2O5) находит широкое применение в изготовление лечебных препаратов, в производстве стекла, керамики, красок, в текстильной и резиновой промышленности, в качестве составной части люминесцентных ламп дневного света.
Сурьма треххлористая (SbCl3) применяется для воронения стали, чернения цинка, в медицине, в качестве протравы в текстильном производстве и как реактив в аналитической химии.
Сурьма трехфтористая (SbF3) применяется в составе электролита при электролитическом рафинировании сурьмы, а также в текстильной промышленности и при производстве тефлона.
Сульфиды сурьмы – соединения сурьмы с серой (Sb2S3 и Sb2S5) – служат основным сырьём для получения металлической сурьмы из её соединений. Её применяют также в пиротехнике, производстве спичек, а пятисернистая сурьма применяется в резиновой промышленности для производства каучука.
Сурьмянистый водород (стибин) SbH3 – применяется в качестве фумиганта для борьбы с насекомыми – вредителями сельскохозяйственных растений.
И, наконец, сурьмяный электрод – стержень из металлической сурьмы, покрытой тонким слоем малорастворимой окиси (Sb(Sb2O3) применяют для измерения рн и главным образом при потенциометрических титрованиях.
В 1974г, в СССР было зарегистрировано открытие, в основе которого лежат сложные биохимические процессы, совершаемые… бактериями. Многолетнее изучение сурьмяных месторождений показало, что сурьма в них постепенно окисляется, хотя при обычных условиях такой процесс не протекает: для этого нужны высокие температуры – более 3000С. Какие же причины заставляют сурьму нарушать химические законы? Микроскопическое исследование образцов окислённой руды показало, что они густо “заселены” неизвестными микроорганизмами, которые и были виновниками окислительных “событий” на рудниках. Но, окислив сурьму, бактерии не успокаивались на достигнутом: энергию окисления они тут же “пускали в ход” для осуществления хемосинтеза, т.е. для превращения углекислоты в органические вещества.
Явление хемосинтеза впервые обнаружено и описано ещё в 1887г русским ученым С.Н. Виноградским. Однако до сих пор науке были известны всего четыре элемента, при бактериальном окислении которых выделяется, энергия для хемосинтеза: азот, сера, железо и водород. Теперь к ним прибавилась сурьма.
Смотрите также
Энтропия органических веществ при нормальных и повышенных давлениях
...
Пятая группа периодической системы
По электронным структурам нейтральных атомов
рассматриваемая группа может быть разделена на две подгруппы. Одна из них
включает азот, фосфор, мышьяк и его аналоги, вторая — ванадий и его аналоги.
...
Алхимия как культурный феномен арабского и европейского средневековья
Алхимия осталась
феноменом Средневековья, тупиковой ветвью познания. Её долго обвиняли в том,
что она – лженаука, но во многом благодаря ей появилась истинная наука – химия.
В алхимиках же ...