Динамические методы

Все рассмотренные методы измерения адгезии характеризуются кратковременным приложением нагрузки. Это так называемые статические методы. Но помимо обычных статических испытаний в некоторых случаях проводят измерения адгезии путем приложения знакопеременных циклически изменяющихся нагрузок, удар­ных и длительных статических нагрузок.

Практически многие методы, применяющиеся при статических кратковременных испытаниях, могут быть использованы и для испытаний на длительную статическую прочность. В первую оче­редь это относится к испытаниям клеевых соединений металлов других материалов.

Особую ценность представляют динамические испытания, с по­мощью которых устанавливается способность соединения адгезив — субстрат противостоять действию переменных нагрузок. Работоспособность изделия или модельного образца характери­зуют числом циклов деформации до разрушения. Однако не всегда удается добиться разрушения образца по стыку. В таких слу­чаях после приложения некоторого числа циклов деформации определяют адгезию одним из принятых статических методов и сравнивают прочность связи до и после утомления, определяя, та­ким образом, величину уменьшения адгезии в результате воздей­ствия циклической нагрузки[6].

Велико значение динамических методов измерения адгезии в некоторых клеевых соединениях металлов, резин, резин с метал­лами и кордом. Динамические испытания клеевых со­единений металлов проводят при сдвиге, неравномерном и равно­мерном отрыве.

При измерении усталостной прочности с помощью неравномер­ного отрыва для клеевых соединений рекомендуются образцы, по­казанные на рис.2,а. Усталостные испытания соединений ме­таллов при сдвиге проводят на образцах, соединенных внахлестку (см. рис. 8, а), или на образцах, имеющих форму параллелепипеда, образо­ванного двумя параллельными металличе­скими пластинками, промежуток между которыми заполнен резиной. Для усталостных испытаний соединений металлов при равномерном отрыве используют об­разцы, склеенные встык (см. рис. 4). Машины, применяемые для усталостных испытаний, должны обеспечивать нагружение с частотой 500—3000 циклов в 1 мин. Определение динамической прочности связи двух резин, а также резин со слоями корда может быть проведено на образцах различной формы. Можно осущест­вить при многократном сжатии и сдвиге различные синусоидальные динамические режимы: постоянство динамической на­грузки, постоянство деформации, постоянство произведения ампли­туд силы и смещения. Во всех случаях на границе между рези­нами возникают касательные напряжения, достигающие макси­мума при расположении плоскости стыка под углом 45°. Приме­нение цилиндрических образцов благоприятствует более равномер­ному распределению напряжений. Условия испытаний варьируются в зависимости от типов применяемых резин, разме­ров и формы образцов. Частота нагружений колеблется от 250 до 850 циклов в 1 мин[6].

Рис. 15. Схема из­мерения динамической прочности связи единич­ной нити корда с рези­ной при многократном сжатии образца: 1— резина; 2—кордная нить; -3 — направляющий ролик; 4 -груз (1-2кГ).

Известны методы определения прочности связи единичной нити корда с резиной в динамических условиях. В этих случаях удается нагружать не только образец в целом, но и отдельную нить и точно задавать основные параметры режима. Описан, например, метод многократных деформаций изгиба на роликах резиновой пластины с завулканизованными в нее нитями корда. После утомления измеряли прочность связи выдергиванием нити (по типу Н-метода). Широкое распространение получил метод многократ­ного изгиба цилиндрического образца, по оси которого проходит

кордная нить, выдергиваемая после утомления. Аналогичный ме­тод испытания применяется и у нас: цилиндрические образцы с кордной нитью по диаметру среднего сечения подвергаются многократному сжатию до отслоения и выдергивания нити (рис.15). Динамическое разнашивание резины не наблю­дается в гантелевидных образцах, укрепляемых в специальных держателях, так как в этих случаях образцы подвергаются знакопеременным деформациям растяжения — сжатия.

Смотрите также

Химия в хозяйстве
Земля как планета солнечной си­стемы существует около 4,6 млрд. лет. Считают, что жизнь на ней зародилась 800—1000 тыс. лет назад. Ученые обнаружили следы деятельности первобытного человека, ...

Благородные газы
К благородным, или инертным, газам относятся: гелий Не, неон Ne, аргон Ar, криптон Kr, ксенон Хе, радон Rn. Они относятся к VIII группе, главной подгруппе периодической системы химических э ...

Вода, дарующая жизнь
Вода - первоисточник жизни. То, без чего невозможна жизнь. Вода — единственная субстанция, которая встречается в природе в трех формах: твердой (лед), жидкой и в виде газа. Хроническое об ...