Белки

Страница 2

Однако определить порядок аминокислот в полипептидной цепи молекулы природного белка удалось лишь полстолетия спустя, после того как был разработан еще один метод анализа.

Открыл этот метод русский ботаник Михаил Семенович Цвет (1872—1919). Исследуя пигменты растений, Цвет пропустил раствор смеси очень мало различающихся по цвету пигментов через трубку, заполненную адсорбентом — порошкообразным карбонатом кальция, и промыл затем адсорбент чистым растворителем. Отдельные компоненты смеси при этом разделились и образовали цветные полосы. Цвет опубликовал статью с описанием открытого им метода разделения, который он назвал хроматографией («цветописью») [94].

Статья русского ученого осталась незамеченной, но в 20-е годы Вильштеттер (см. разд. «Лекарственные средства») и его ученик, немецкий химик (австриец по происхождению) Рихард Кун (1900—1967), вновь открыли этот способ разделения. В 1944 г. английские химики Арчер Джон Портер Мартин (род. в 1910 г.) и Ричард Лоуренс Миллингтон Синг (род. в 1914 г.) предложили новый вариант этого метода: они заменили трубку с адсорбентом на фильтровальную бумагу. Анализируемая смесь распределялась по фильтровальной бумаге, и компоненты смеси при этом разделялись. Этот способ был назван бумажной хроматографией .

В конце 40-х — начале 50-х годов нашего века химикам удалось обстоятельно проанализировать с помощью метода бумажной хроматографии смеси аминокислот, полученные при расщеплении ряда белков. В результате удалось установить общее число остатков каждой аминокислоты, содержащихся в молекуле белка, однако порядок расположения аминокислот в полипептидной цепи при этом определить, естественно, было нельзя. Английский химик Фредерик Сенгер (род. в 1918 г.) изучал инсулин — белковый гормон, состоящий примерно из пятидесяти аминокислот, распределенных между двумя взаимосвязанными полипептидными цепями. Сенгер расщепил молекулу на несколько более коротких цепей и проанализировал каждую из них методом бумажной хроматографии. Восемь лет продолжалась кропотливая работа по «складыванию мозаики», но к 1953 г. был установлен точный порядок расположения аминокислот в молекуле инсулина. Позднее таким же способом было установлено детальное строение даже больших молекул белка [95].

Следующий шаг состоял в том, чтобы подкрепить этот труд реальным синтезом заданной молекулы белка. В 1954 г. американец Винсент Дю-Виньо (1901—1978) положил начало такому синтезу. Он получил окситоцин — пептид, состоящий всего лишь из восьми аминокислотных остатков. Однако с более сложными молекулами дело пошло быстрее, и вскоре были синтезированы цепи, содержащие несколько десятков аминокислот. К 1963 г. в лабораторных условиях были получены полипептидные цепи инсулина.

Однако, зная только порядок расположения аминокислот, нельзя еще представить себе совершенно отчетливо все уровни организации белковой молекулы. Даже при осторожном нагревании белки нередко необратимо утрачивают свойства, присущие им в природном состоянии, иными словами, происходит денатурация белков. Причем обычно денатурация не сопровождается расщеплением полипептидной цепи; чтобы расщепить цепь, нужны более жесткие условия. Следовательно, цепи образуют какую-то определенную структуру под действием слабых «вторичных связей». В образовании таких вторичных связей обычно участвует атом водорода, находящийся между атомами азота и кислорода. Такая водородная связь в двадцать раз слабее обычной валентной связи.

В начале 50-х годов американский химик Лайнус Полинг (род. в 1901 г.) предположил, что полипептидная цепь свернута в спираль (подобна «винтовой лестнице») и удерживается в этом положении водородными связями. Эта идея оказалась особенно плодотворной применительно к относительно простым фибриллярным белкам , из которых состоят покровные и соединительные ткани.

Более того, спирали образуют даже более сложные по структуре глобулярные белки . Английские химики Макс Фердинанд Перутц (уроженец Австрии) (род. в 1914 г.) и Джон Коудери Кендрю (род. в 1917 г.) обнаружили это при детальном исследовании строения гемоглобина и миоглобина (белков крови и мышц соответственно, способных обратимо присоединять кислород). В своей работе они использовали новый метод анализа — метод дифракции рентгеновских лучей : пучок рентгеновских лучей, проходящий через кристаллы, рассеивается атомами, образующими кристаллы. Рассеивание в заданном направлении и при заданном угле наиболее эффективно в том случае, когда атомы располагаются последовательно. Определяя величину отклонения, можно выявить расположение атомов внутри молекулы. Исследовать таким образом большие молекулы сложной структуры, подобные белковой молекуле,— задача весьма трудоемкая, и тем не менее к 1960 г. таким образом удалось уточнить последние детали строения молекулы миоглобина (состоящей из двенадцати тысяч атомов).

Страницы: 1 2 3

Смотрите также

Отчёт по экскурсионной практике на КОАО «Азот»
...

Влияние химических веществ на здоровье человека
Международное изучение последствий подвергания диоксинам и неопухолевой смертности рабочих по производству и распылению кислородо- и фенолосодержащих гербицидов и хлорофенолов. ...

Газохроматографическое исследование углеводородов С1-С6 сероводорода и меркаптанов в нефтяных продуктах
Нефть является основным сырьем для производства энергоносителей, которые играют ведущую роль в современной экономике. Масштабы потребления энергоресурсов, главным образом, определяют уровень ...