Важнейшие способы получения солей.

Страница 1

1. Взаимодействие металла с кислотой. Образование солей при взаимодействии металла с кислотами может сопровождаться или не сопровождаться выделением водорода. Это зависит от активности металла, химических свойств кислоты и её концентрации.

Кислоты, не являющиеся окислителями, взаимодействуют лишь с металлами, находящимися в ряду напряжений левее водорода. В этих случаях образование солей сопровождается выделением водорода:

Zn + 2 HCl = ZnCl2 + H2­

Mg + 2 CH3COOH = Mg(CH3COO)2 + H2­.

Металлы, находящиеся в ряду напряжений правее водорода, с такими кислотами не взаимодействуют.

Кислоты, обладающие окислительными свойствами, вступают в реакцию как с активными, так и с малоактивными металлами без выделения водорода:

3 Mg + 8 HNO3 = 3 Mg(NO3)2 + 2 NO­ + 4 H2O

Cu + 4 HNO3 = Cu(NO3)2 + 2 NO2­ + 2 H2O.

Характер взаимодействия с металлами серной кислоты существенно зависит от её концентрации. Разбавленная серная кислота не проявляет окислительных свойств и взаимодействует с активными металлами с выделением водорода:

Fe + H2SO4 = FeSO4 + H2­.

Концентрированная серная кислота является окислителем и взаимодействует с металлами с образованием солей без выделения водорода:

Cu + 2 H2SO4 = CuSO4 + SO2­ + 2 H2O

2. Взаимодействие основного оксида с кислотой:

СаО + 2 НCl = CaCI2 + H2O

FeO + H2SO4 = FeSO4 + H2O.

3. Взаимодействие основания с кислотой. Реакции этого типа имеют большое практическое значение и получили название реакции нейтрализации. Они всегда сопровождаются образованием воды.

Ва(ОН)2 + 2 НCl = BaCl2 + 2 H­2O

2 NaOH + H2SO4 = Na2SO4 + 2 H2O.

4. Взаимодействие соли с кислотой. При реакциях этого типа образуется новая соль и новая кислота. Для осуществления этой реакции необходимо, чтобы взятая кислота была сильнее образующейся или менее летучей. Например:

СаСO3 + 2 HNO3 = Ca(NO3)2 + CO2­ + H2O

2 NaCl + H2SO4 = Na2SO4 + 2 HCl­.

Действием избытка кислоты на средние соли многоосновных кислот получают кислые соли:

Na2SO4 + H2SO4 = 2 NaHSO4

CaCO3 + CO2 + H2O = Ca(HCO3)2.

5. Взаимодействие основного оксида с кислотным:

СаО + SiO2 = CaSiO3

Ag2O + SO3 = Ag2SO4.

6. Взаимодействие основания с кислотным оксидом:

6 NaOH + P2O5 = 2 Na3PO4 + 3 H2O

2 KOH + CrO3 = K2CrO4 + H2O.

7. Взаимодействие соли с кислотным оксидом. Реакции этого типа происходят преимущественно при нагревании, поэтому вступающий в реакцию кислотный оксид должен быть менее летуч, чем образующийся после реакции:

СаСО3 + SiO2 = CaSiO3 + CO2­

Cr2(SO4)3 + 3 B2O3 = 2 Cr(BO2)3 + 3 SO3­.

8. Взаимодействие основания с солью. Этой реакцией часто пользуются в практике как для получения солей, так и для получения оснований, основных солей, для перевода кислых солей в средние:

Fe(NO3)3 + 3 NaOH = 3 NaNO3 + Fe(OH)3¯

ZnCl2 + KOH = KCl + Zn(OH)Cl

Ca(HCO3)2 + Ca(OH)2 = 2 CaCO3 + 2 H2O.

9. Взаимодействие между двумя солями. Это один из самых распространённых методов получения солей. Из двух участвующих в реакции солей в результате двойного обмена образуются две новые соли. Реакции этого типа протекают до конца лишь в том случае, если один из продуктов удаляется из сферы реакции (выпадает в осадок)­:

BaCl2 + Na2SO4 = BaSO4¯ + 2 NaCl

Ag2SO4 + 2 KI = 2 AgI¯ + K2SO4.

10. Взаимодействие между металлом и солью. Реакции протекают при условии, что металл находится в ряду напряжений левее металла, входящего в состав исходной соли:

Fe + CuSO4 = FeSO4 + Cu¯

Cu + Hg(NO3)2 = Cu(NO3)2 + Hg¯

11. Взаимодействие металла с неметаллом. Этим методом получают соли бескислородных кислот:

2 Fe + 3 Cl2 = 2 FeCl3

Zn + S = ZnS.

12. Взаимодействие металла со щёлочью. Металлы, оксиды которых амфотерны, реагируют с водными растворами щелочей, выделяя водород и образуя соли:

Zn + 2 NaOH = Na2ZnO2 + H2­

2 Al + 6 KOH = 2 K3AlO3 + 3 H2­.

13. Взаимодействие неметалла со щёлочью. Галогены, сера и некоторые другие элементы взаимодействуют со щелочами, образуя две соли одновременно — бескислородную и кислородсодержащую:

Страницы: 1 2

Смотрите также

Химия металлоорганических соединений
В создании химии металлоорганических соединений, переживающих период быстрого и всестороннего развития, принимали участие выдающиеся русские и зарубежные исследователи: А. М. Бутлеров, А. М ...

Марганцево-цинковые элементы
...

Химия элементов IБ группы
...