Состояния и уровни многоэлектронных атомов

Научная литература / Состояния и уровни многоэлектронных атомов
Страница 1

Орбитали.

1. Пространственная волновая функция (функция состояния) любой системы, состоящей из одной частицы, называется орбиталью (Ч. Киттель). У «ящика» это орбиталь поступательная (трансляционная), у ротатора - вращательная (ротационная), у осциллятора - колебательная (вибрационная), у электронного движения – электронная. Орбитали разных стационарных движений и введённых для них модельных систем удобно помечать индексами, указывающих на природу движения t, r, V.

Электронные орбитали атомов и молекул (АО и МО).

2. Электронные орбитали атомов называют атомными (АО), молекул – молекулярными орбиталями (МО). АО одноэлектронного атома (атома H

и водородоподобных ионов) являются строгими решениями уравнения Шрёдингера. Выражения для АО многоэлектронного атома уже приближённые. Для МО точные выражения можно получить только для молекулярного иона водорода H

2+

. У всех прочих молекул МО являются приближёнными функциями.

Квантовые числа (n, l, m). Потенциальная энергия электронов в атоме (в СГС).

3. АО многоэлектронного атома это пространственные волновые функции, построенные для одного («пробного») электрона. Потенциальная кулоновская энергия, учитывает прежде всего его притяжение к ядру

U

(

ri

)= -

Ze

2

/

ri

, и также корректируется с учётом отталкивания от всех прочих электронов оболочки. Энергия отталкивания во всём коллективе состоит из отдельных слагаемых. Каждое возникает в отдельной паре частиц и имеет вид

U

(

rij

)= +

e

2

/

rij

.

4. Суммарная энергия отталкивания в оболочке содержит столько слагаемых, сколько различных парных сочетаний можно составить в коллективе из N частиц. Частица с номером i=1 образует N-1 пар с прочими электронами, у электрона с номером i=2 комбинация с первым электроном уже учтена и остаётся ещё N-2 неучтённых комбинаций. У третьей частицы с i=3 учтены её комбинации с 1-м и 2-м электронами и новыми остаются её парные комбинации с N-3 частицами. Так нетрудно пересчитать все парные комбинации электронов в оболочке и записать соответствующие им слагаемые энергии отталкивания.

5. Это число сочетаний равно CN2= N!/(N-2)!2!= N(N-1)/2. Они образуют массив с двумя индексами: {[12; 13; 14;…1n], [23; 24;…2n], [34;…3n], …[(n-2),(n-1); (n-2)n], [(n-1); n]}. Столько слагаемых входит в потенциальную энергию электростатического отталкивания электронов в оболочке. Оно равно половине всех недиагональных элементов квадратного двумерного массива, т.е. (N2-N)/2= N(N-1)/2, т.е. числу элементов в одном из треугольников квадратной матрицы либо над её диагональю, либо под нею.

6. В результате сумма имеет вид U

отт

(1,2,3,…

N

)=

U

(

r

12

)+

U

(

r

13

)+…+

U

(

N

-1,

N

)=

S

i

S

j

U

(

rij

)=

S

i

S

j

(+

e

2

/

rij

)

(где суммирование проводится или при всех i

<

j

, или при всех j

<

i

).

7. Подобный вид энергии отталкивания исключает разделение переменных в коллективном уравнении Шрёдигера и делает его аналитически точное решение невозможным.

8. Вся энергия электронного коллектива, включая притяжение к ядру и отталкивание электронов равна U

(

ri

)=

S

i

(-

Ze

2

/

ri

)+

S

i

S

j

(+

e

2

Страницы: 1 2 3 4 5 6

Смотрите также

Охрана труда сегодня, как никогда, актуальна
Опыт крупнейших мировых компаний показывает, что охрану труда высшие руководители считают одним из главных приоритетов. Так, из десятков показателей деятельности предприятия охрану труда и здоровья св ...

Этилен и его производные в промышленном органическом синтезе
...

Синтез нанокристаллических полупроводниковых частиц
...