Соотношения неопределённостей Гейзенберга
7.2.5.2. Если коммутатор  ненулевой, то получаемая информация зависит от последовательности измерений, и величины и в одном приборе в принципе совместно не могут быть измерены.
ненулевой, то получаемая информация зависит от последовательности измерений, и величины и в одном приборе в принципе совместно не могут быть измерены. 
 
Что же имеет место в природе на самом деле? Попробуем получить ответ.
7.3.Соотношения неопределённостей Гейзенберга.
7.3.1. Накоплена достаточная информация, чтобы решить одну из важнейших проблем квантовой механики, связанную с совместными измерениями динамических переменных.
Исследуем, можно ли измерить:
- импульс частицы, находящейся в определённой точке пространства;
- момент импульса вращающейся частицы в определённой точке орбиты;
- энергию системы в конкретный момент времени.
7.3.2. Выбор этих пар динамических переменных не случаен. Эти пары величин взаимно дополняют друг друга таким образом, что их произведение обладает размерностью циклической константы Планка  , так что
, так что  .
. 
Размерность величины  является произведением размерностей энергии и времени или импульса и расстояния. Физическую величину с такой размерностью принято называть действием. В силу этого-то константу Планка часто называют квантом действия.
является произведением размерностей энергии и времени или импульса и расстояния. Физическую величину с такой размерностью принято называть действием. В силу этого-то константу Планка часто называют квантом действия. 
7.3.3. Образуем три коммутатора  ,
,  ,
,  , необходимых для исследования этих трёх ситуаций согласно выводам предыдущих параграфов. Сразу же запишем выражения и для комплексно сопряжённых операторов.
, необходимых для исследования этих трёх ситуаций согласно выводам предыдущих параграфов. Сразу же запишем выражения и для комплексно сопряжённых операторов. 
7.3.4. Первый коммутатор построим из оператора компоненты импульса и соответствующей ему координаты:
 
 
7.3.5. Второй коммутатор построим аналогично из оператора момента импульса и ему соответствующей координаты - угла поворота плоского ротатора:
 .
. 
7.3.6. Также и третий коммутатор построим из оператора энергии и времени. Зависящий от времени гамильтониан заимствуем из временного уравнения Шрёдингера:
 
 
Перед Вами наиболее последовательный операторный вывод соотношений неопределённостей Гейзенберга. Они относятся к числу фундаментальных законов природы.
7.3.7. Все три коммутатора не равны нулю, и их численные значения мнимые и равны либо , либо -
, либо - . Вместо мнимых значений удобно построить на их основе действительные квадраты модулей. Для этого каждое из полученных мнимых значений умножается на комплексно сопряжённую величину. Полагая волновую функцию нормированной, для компоненты импульса и соответствующей координаты получаем равенства:
. Вместо мнимых значений удобно построить на их основе действительные квадраты модулей. Для этого каждое из полученных мнимых значений умножается на комплексно сопряжённую величину. Полагая волновую функцию нормированной, для компоненты импульса и соответствующей координаты получаем равенства: 
 
 
Квадрат модуля каждого из трёх коммутаторов один и тот же. Во всех случаях получается  . Во всех случаях получается квадрат циклической константы Планка
. Во всех случаях получается квадрат циклической константы Планка :
: 
 (7.4)
(7.4) 
7.3.8. Это значение получено наиболее строго и представляет собою среднеквадратичный разброс, теоретически предопределённый для любого эксперимента, нацеленного на совместное измерение пар динамических переменных.
Разброс порядка величины константы Планка  для явлений микромира очень велик - настолько велик, что совместные количественные измерения динамических переменных с таким коммутатором лишены физического содержания.
для явлений микромира очень велик - настолько велик, что совместные количественные измерения динамических переменных с таким коммутатором лишены физического содержания. 
Так в определённой точке линейной траектории невозможно точно указать величину импульса системы, и, напротив, при точно фиксированном импульсе системы невозможно указать её точное положение.
В определённой точке траектории криволинейного движения невозможно указать вектор момента импульса, но если момент импульса фиксирован, то нельзя указать положение тела на криволинейной траектории.
В точно определённый момент времени невозможно указать энергию движущегося тела, и напротив, точное определение энергии тела не может быть привязано к определённому моменту времени в эволюции системы.
Смотрите также
Экспериментальные данные и закономерности спектров соединения хромофоров
   
Рассмотрим теперь, как
влияет присутствие в молекуле различных хромофоров и окружающей среды
(растворителя) на спектр соединения.
Как известно, во многих
случаях в электронных спектрах к ...
   
Система удобрений
   
Под системой
удобрений  понимают комплекс агротехнических и организационных мероприятий,
связанных с применением удобрений и направленное на увеличение урожайности
возделываемых культур и п ...
   
