Синтетические корунды
Год рождения синтетического рубина – 1910. В лаборатории французского химика А. Е. Александра были получены искусственные рубины ювелирного качества по методу, предложенному Вернейлем в 1891 г. С этого времени этот метод стал промышленным. Сырьем для синтеза корунда служит тонкоизмельченный порошок окиси алюминия, получаемый при кальцинации аммоний-алюминиевых квасцов. Для окрашивания кристаллов добавляют окислы переходных металлов в концентрациях 0,1 – 2,0 %: окись хрома для рубина, окиси железа и титаната для сапфира, окиси никеля для желтого корунда, окиси кобальта для зеленого корунда и окиси ванадия для псевдоалександрита. Некоторые зарубежные фирмы ("Линде" в США, "Видерс Карбидвекр" в ФРГ) с 1947 г. начали промышленное изготовление "звездчатых" сапфиров и рубинов. Эффект астеризма получается при добавке в исходное сырье небольшого количества (около 0,3 %) окиси титана. После синтеза полученные кристаллы отжигают длительное время в окислительной среде при температуре от 1100 до 1500 °С; при этом происходит пересыщение окисла титана и выделение тонких ориентированных игл рутила, которые обеспечивают известный эффект шестилучевой звезды.
Способ выращивания синтетических корундов по методу М. А. Вернейля до 1940 г. был распространен только в Европе. Им занимались такие фирмы, как "Sodem Dj evahirdjian" ("Содем Дьевайрдиан") в Швеции, "Baikowski" и "Rubis Synthdes" ("Банковский" и "Рубис синтез") во Франции, "Wieders Carbidwerk" ("Видерс Карбидверк") в ФРГ. С 1940 г. этот метод распространился в США, когда фирма "Линде" начала промышленный выпуск синтетических корундов.
Методом Чохральского можно получить синтетические корунды любой формы – трубчатые, стержневые, ленточные и др. Такие профилированные изделия из корундов широко применяются в технике.
Синтезируя рубины по методу флюса или гидротермальным способом, возможно получить ювелирные камни весьма высокого качества. Этими методами фирма "Чатэм" (США) изготавливает ювелирные рубины размером до 60 мм.
В СССР методы выращивания синтетических корундов были освоены еще в 20-х годах. В настоящее время в Институте кристаллографии АН СССР разработаны и применяются новые методы синтеза корундов, при помощи которых получают изделия из корундов самой различной формы. В институте были созданы установки "Сапфир-ІІІ" и "Сапфир-2М", в которых синтезируются корунды методом направленной кристаллизации, предложенной Х.С. Багдасаровым. Этот способ позволяет выращивать кристаллы лейкосапфира в виде пластин больших геометрических размеров с определенной заданной кристаллографической ориентацией.
Суть нового метода заключается в том, что молибденовый контейнер, заполненный исходным материалом, помещается в вакуумную печь, где его нагревают до температуры более 2000 °С. При этом расплавляется окись алюминия. Контейнер с расплавом медленно перемещается в зоны с более низкой температурой и при снижении температуры до определенного значения расплав кристаллизуется. В настоящее время этим способом получают кристаллы массой более 4 кг. Весь процесс автоматизирован, за соблюдением режимов наблюдают датчики, дающие информацию на ЭВМ, которая управляет синтезом кристаллов.
В настоящее время в СССР освоено промышленное производство ювелирных и технических корундов. Прозрачные, тонкие, легкие трубки различного сечения и длины, полые трех-, четырех- и шестигранные призмы, нитеводители, швеллеры и уголки разных размеров из корунда – эти изделия применяются в лазерной технике, радиоэлектронике, светотехнике, химической промышленности, приборостроении. Там, где другие материалы не выдерживают высоких температур и действий агрессивных сред, используются изделия из корундов. Резцы из корунда позволяют без дополнительной заточки обработать в несколько раз большее число деталей, чем твердосплавные резцы. Сапфиры применяются даже в пищевой промышленности в виде датчиков для контроля состава сиропов, соков, жидких веществ. При этом срок работы датчика из сапфира увеличился до 2 – 3 лет против 3 – 4 месяцев работы датчика из стекла.
Смотрите также
Регенерация азотной и серной кислоты
...
Химия и медицина
...
Технология неконцентрированной азотной кислоты
Азотная
кислота по объему производства занимает среди других кислот второе место после
серной кислоты. Все возрастающий объем производства HNO3
объясняется огромным значением азотной кислот ...