Введение.

Жизнь современного человека трудно представить себе без всевозможных искусственных и синтетических материалов. Из них сделаны большинство предметов нашей повседневной жизни. Натуральные же, природные, материалы давно перешли из разряда самых простых и доступных в разряд роскоши, доступной далеко не каждому. Одно из основных мест среди искусственных материалов в нашей жизни занимают полимерные вещества. Мы встречаемся с ними ежедневно: корпуса бытовой техники и электроники, упаковка продуктов, одежда и т. п. Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются неза­менимыми и до сих пор, например в целлюлозно-бумажной про­мышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических поли­меров – материалов, полученных синтезом из низкомолекуляр­ных веществ и не имеющих аналогов в природе. Развитие хими­ческой технологии высокомолекулярных веществ – неотъемлемая и существенная часть современной

промышленности.Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой.

Полимером называется органическое вещество, молеку­лы которого состоят из одинаковых, многократно повторяю­щихся, звеньев – мономеров. Размер молекулы полимера определяется чилом этих звеньев(степенью полимери­зации n). Если n= от 10 и выше, то такие вещества называют олигомерами. Если n значительно больше 10, то вещества называют полимерами.С возрастанием n увеличива­ется вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 104, и тогда длина молекул достига­ет микрометров. Молекулярная масса полимера равна произве­дению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах от 103 до 3×105. Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморф­ной до частично кристаллической. Доля кристалличности в зна­чительной мере определяется геометрией цепей. Чем ближе укла­дываются цепи, тем более кристалличным полимер становится. Кристалличность не может быть идеальной, всегда остаются аморфные участки.

Аморфные полимеры плавятся в диапазоне температур, зави­сящем не только от их природы, но и от длины цепей; кристалли­ческие имеют точку плавления.

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифици­ровать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.

Одним из самых популярных в промышленном и бытовом использовании волокнитов является поли-е-капроамид, который известен широкому кругу людей, как капрон. Необычайную популярность данный полимер приобрел благодаря, в основном, своим прочностным характеристикам и относительной дешевизне в получении. И сегодня трудно представить, например, нашу одежду без капроновых составляющих.

Поли-е-капроамид впервые был получен в 1899 г. Габриэлем и Маасом при поликонденсации е-аминокапроновой кислоты. При этом было сделано очень важное наблюдение, что нагревание е-аминокапроновой кислоты приводит к образованию наряду с полимером также и низкомолекулярного циклического продукта - е-капролактама.

Поли-е-капроамид впоследствии сыграл большую роль в развитии промышленности синтетических волокон: его стали широко применять в качестве исходного материала для производства волокна. Это произошло после того, как Шлак открыл в 1938 г., что е-капролактам при нагревании с водой способен полимеризоваться, образуя при этом высоко-молекулярный полимер. На основе этого цолиамида было создано синтетическое волокно, получившее название перлон или капрон.[8]

Смотрите также

Витамины
...

Бумага
...

Сложные реакции
...