Физические свойства алмаза и графита.

Полезные материалы / Подгруппа углерода. Углерод / Физические свойства алмаза и графита.
Страница 1

Алмаз

Графит

Прозрачен, бесцветен.

Не проводит электрический ток, так как нет свободных электронов.

Самое твердое из природных веществ.

Непрозрачен, серого цвета с металлическим блеском.

Довольно хорошо проводит электрический ток, благодаря наличию подвижных электронов.

Скользок на ощупь.

Одно из самых мягких среди твердых веществ.

Алмаз - самое твердое природное вещество. Кристаллы алмазов высоко ценятся и как технический материал, и как драгоценное украшение. Хорошо отшлифованный алмаз - бриллиант. Преломляя лучи света, он сверкает чистыми, яркими цветами радуги.

Размеры мировой добычи алмазов очень незначительны - гораздо меньше, чем благородных металлов - золота и платины. Из алмазов делают наконечники буров для сверления твердых горных пород. Также алмазы применяют для резки стекла и в виде “алмазного инструмента”(резцы, сверла, шлифовальные круги). Алмазным порошком шлифуют бриллианты и твердые сорта стали. Самый крупный из когда-либо найденных алмазов весит 602 г, имеет длину 11 см, ширину 5 см, высоту 6 см. Этот алмаз был найден в 1905 г и носит имя “Кэллиан”.

Один из самых крохотных в мире граненых алмазов, весом всего лишь 0,25 мг(в 4000 раз легче копеечной монетки), демонстрировался на всемирной выставке в Брюсселе. Несмотря на ничтожный вес и размер - зернышко объемом 0,07 мм3 ,- искусные руки гранильщика нанесли на нем на нем 57 граней, рассмотреть которые можно только под микроскопом.

Рис.2 Модель решетки графита.

В 1967 г. Б.В. Дерягин и Д.В. Федосеев вырастили на грани алмаза нитеобразный кристалл (“алмазные усы”). Рост проис­ходил при высокой температуре, причем источником углерода служил метан; за четыре часа кристаллическая нить вырастала на 1 мм, что, вообще говоря, очень много для процессов такого рода.

Большая часть образцов аморфного угля состоит из иска­женных кристаллов графита. Характерное расположение атомов углерода по углам шестиугольника при этом сохраняется.

В решетках графита часто встречаются разнообразные де­фекты структуры, как структурные, так и химические, связан­ные с захватом ионов и атомов. В решетку графита могут внед­ряться (А. Убеллоде, Ф. Льюис) атомы бора, кислорода, серы и т. п., образующие связи между слоями и влияющие на прово­димость графита. Графит образует своеобразные химические соединения, в которых присоединяющиеся частицы размещают­ся между плоскостями, занятыми атомами углерода.

При нагревании графита в парах щелочных металлов полу­чаются легко окисляющиеся соединения. Так, при 400 °С калий образует соединение C8K. Состав соединений сильно зависит от температуры и изменяется в широких пределах. Известны со­единения графита с рубидием, цезием; для натрия и лития чет­ких результатов пока нет; натрий, по-видимому, дает соедине­ние C64Na фиолетового цвета.

Графит дает также соединения с металлами, аммиаком и аминами типа MeC12(NH3)2. Решетка графита во всех случаях расширяется при образовании соединений, и межплоскостное расстояние достигает 0,66 нм, а для метиламинового комплекса лития даже до 0,69 нм. Получены соединения: C9Br, C5CI, C8CI, CF.

Тифлон (CF) серого цвета, изолятор, не похож на другие соединения типа соединений “внедрения”. Предполагается образование в нем ковалентных связей фтор - углерод.

Графит раньше применялся как пишущее средство. С XIX века и по сей день используют графитовые электроды в металлургии и химической промышленности, например в производстве алюминия: металл осаждается на графитовом катоде. Сейчас нашли применение графитизированные стали, то есть стали с добавлением монокристаллов графита. Эти стали используют при изготовлении коленчатых валов, поршней и других деталей, где особенно важна высокая прочность и твердость материала.

Графит играет важную роль в элект­ротехнической промышленности и атомной энергетике, где его используют в качестве замедлителя нейтронов. С помощью графитовых стержней регулируют скорость реакции в атомных котлах.

Способность графита расщепляться на чешуйки позволяет делать на его основе смазочные вещества. Графит - прекрасный проводник теплоты, при этом он может выдержать значительные температуры до 3000 °С и выше. К тому же он химически довольно стоек. Эти свойства нашли применение в производстве графитовых теплообменников и в ракетной технике(для изготовления рулей и сопловых аппаратов.

Страницы: 1 2

Смотрите также

Промышленные синтезы на основе углеводородов
Углерод определяется тем, что свыше 90 % всех первичных источников потребляемой в мире энергии приходится на органическое топливо, главенствующая роль которого сохранится и на ближайшие дес ...

Синтез нанокристаллических полупроводниковых частиц
...

Синтез 1,1-дихлор-2-метил-2-фенилциклопропана
...