Электрические свойства анодного оксида алюминия, импрегнированного фторопластом
Многие оксидные пленки на металлах, в том числе и на алюминии, обладают высоким сопротивлением, являются хорошими диэлектриками и проявляют свои свойства даже в сверхтонких слоях [1]. Представляло большой интерес выяснить, как влияет включение в анодный оксид алюминия (АОА) вещества, обладающего высокими диэлектрическими свойствами - политетрафторэтилена (ПТФЭ) на электрические свойства оксидных пленок.
Формирование АОА осуществляли из фонового электролита, состоящего из серной, сульфосалициловой и щавелевой кислот, переменным асимметричным током промышленной частоты. Ток представлял собой две полусинусоиды разной амплитуды. Источником тока служило специальное устройство [2], состоящее из двух диодов, включенных параллельно и проводящих ток в разных направлениях через регулируемые сопротивления.
Электрические свойства оксидных пленок изучали путем измерения комплексного сопротивления для переменного тока (импеданса) при малых напряжениях (0,03 В), которые не могли изменить состояние пленки. Измерение импеданса проводили в ртути на мосте переменного тока Р – 568. Определяли последовательно емкость (Сs) и сопротивление (Rs) пленки при различных частотах [3].
Ячейка представляла собой стеклографитовый стакан, который одновременно служил и противоэлектродом. Измерение проводили на игольчатом электроде из технического алюминия А99,5, армированном во фторопласт. Подготовку поверхности образцов осуществляли по стандартной методике [4]. Площадь электродов, равную 0,35 см2, поддерживали постоянной при всех измерениях.
Изучали электрические свойства воздушно-оксидных плёнок и АОА, сформированного в растворе фонового электролита с добавкой и без добавки ПТФЭ, при различных режимах.
Воздушно-оксидная плёнка на алюминии не защищала металл от ртути. При погружении этих образцов в ртуть они быстро разрушались, поэтому измерения на них сделать было невозможно.
Плёнки АОА, содержащие ПТФЭ, были достаточно стойкими. При погружении в ртуть на них не наблюдалось никаких визуальных изменений в течение трёх-четырёх часов. Результаты были хорошо воспроизводимы.
Результаты измерений в ртути и их обработка с применением математического пакета Mathcad – 6 Plus на ЭВМ представлены в таблице.
Параметры импеданса для АОА, полученные в ртути
|
Исследуемый образец АОА |
Сопро-тивление раствора, Ом |
Ёмкость двойного слоя, μФ |
Емкость адсорбции, μФ |
Постоянная Варбурга, Ом |
Сопротивление перехода, Ом |
Сопротивление диффузии, Ом |
Емкость диффузии, μФ |
|
Ненаполненный ПТФЭ |
450 |
1,05∙10-9 |
1,78∙10-7 |
1,831∙105 |
-365,084 |
938,72 |
2,66∙10-8 |
|
Наполненный ПТФЭ |
5000 |
1,4∙10-11 |
0,9∙10-7 |
7,152∙105 |
922,611 |
3,768∙104 |
6,75∙10-5 |
|
Напол-ненный ПТФЭ и дополнительно пропитанный |
5000 |
0,3∙10-10 |
10,8∙10-10 |
2,082∙107 |
-2,627∙104 |
1,056∙105 |
2,36∙10-10 |
Смотрите также
Синтез хлорида олова (IV)
В этой работе рассмотрены свойства хлорида
олова (IV), методы синтеза и
применение. Хлорид олова (IV) –
вещество, необходимое в неорганическом синтезе; в данный момент в лаборатории
отсу ...
Седьмая группа периодической системы.
Из членов данной группы водород был рассмотрен ранее.
Непосредственно следующие за ним элементы — F, Сl, Br и I — носят общее
название галогенов. К ним же следует отнести и элемент № 85 — астат ...
Энтальпия образования индивидуальных веществ. Прогнозирование энтальпии образования методом Бенсона
Наилучшее решение
вопросов разработки процессов химической технологии и аппаратуры для их
проведения возможно лишь при наличии надежной информации по физико-химическим и
термодинамическим с ...
