Движение частицы на круговой орбите.

В этой задаче вычисления так же достаточно идеалистичны, как и в предыдущей.

Физическое содержание задачи в дальнейшем неизбежно многократно обсуждается с различными смысловыми вариациями, но для этого начинающему нужна хотя бы предварительная количественная основа. Так меня учили .

Поэтому наша цель вначале не в строгости, а в возможности пусть и эклектического, "лоскутного", в какой-то мере живописного, но всё же количественного описания. Строгость выводов - потом. Итак, поскорее к цели .

Если частица движется по кругу в поле центральной кулоновской силы, создаваемой ядром с порядковым номером Z, то на замкнутой "круговой орбите" укладывается целое число волн материи 2r=n/2, "nÎN{1,2,3, .}. Следует вывод о том, что квантованной оказывается величина, похожая на модуль момента импульса: =Vr = n(h/2), "nÎN.

В качестве такого водородоподобного атома следует рассматривать многозарядный ион, у которого оставлен всего один электрон. Можно так же рассматривать и атом позитрония. Это электрон-позитронная пара до аннигиляции .

Центростремительная сила, удерживающая частицу на круговой орбите, имеет кулоновскую природу, и из баланса этих сил получается "теорема вириала", определяющая взаимосвязь между кинетической и потенциальной энергиями в поле центральной силы 2T=-U. По этой теореме кинетическая энергия равна половине потенциальной, но с положительным знаком, а полная энергия равна половине потенциальной E=U/2 и также отрицательна E=-Ze2/2r. Простейшие расчёт показывают, что возможные значения радиуса классической "орбиты" дискретны – квантованы r=(n2/Z)(h/2)2/(mee2). Соответственно квантованы и значения полной энергии. Результирующее выражение для дискретных энергетических уровней называется формулой Бора.

Приведём всю сводку вычислений, а комментарий к ним только что был дан выше:

Для корректных расчётов свойств системы, состоящей из двух взаимно обращающихся частиц с конечными массами следует использовать общую приведённую массу. Приведённая масса  системы электрона и протона учитывает их обращение вокруг общего центра масс и мало отличается от массы электрона. Она равна

= eMp /( e+Mp)=1840/1841

Введя приближение e<<Mp , можно принять =e.

Формула Бора и выражение для боровского "радиуса" корректно выводятся из решения уравнения Шрёдингера для атома H. Квантово-механический вывод логически строен, но это достигается за счёт резкого усложнения математической стороны задачи. Величина a0=0.529 Ao называется боровским радиусом. В полуклассической квантовой теории он считается радиусом первой круговой орбиты, на которой электрон движется в основном квантовом состоянии, но эта примитивная картина неверна и её содержание будет изменено в квантовой механике. Её истинный смысл вероятностный. Он выявляется лишь из квантово-механического анализа свойств атома H. Боровский радиус есть не что иное, как расстояние наиболее вероятного удаления электрона от ядра на низшем энергетическом уровне - в основном состоянии атома.

Смотрите также

Химия наследственности. Нуклеиновые кислоты. ДНК. РНК. Репликация ДНК и передача наследственной информации
         Мы рождаемся, взрослеем, у нас появляются дети и внуки. Мы ни одни живые существа на этой планете, вокруг нас ежечасно, ежесекундно происходит зарождение новой жизни. Этот процесс ...

Бионеорганическая химия
...

Продукция установки УПН
Товарной продукцией цеха подготовки, перекачки нефти является подготовленная нефть. В зависимости от степени подготовки устанавливаются I,II,III группы нефти.     Согласно ГОСТ 9965-76 по показат ...