Синергетика – теория самоорганизации.

Страница 1

Синергетика – теория самоорганизации. Ее разработка началась несколько десятилетий назад, и в настоящие время она развивается по нескольким направлениям: синергетика (Г. Хакен), неравновесная термодинамика (И. Пригожин) и др.

Общий смысл развиваемого ими комплекса идей, называя их синергетическими (термин Г. Хакена), состоит в следующем:

а) процессы разрушения и созидания, деградации и эволюции во Вселенной, по меньшей мере, равноправны;

б) процессы созидания (нарастания сложности и упорядоченности) имеют единый алгоритм независимо от природы систем, в которых они осуществляются.

Синергетика претендует на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация как живой, так и неживой природы. Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее к более сложным и упорядоченным формам организации. Отсюда следует, что объектом синергетики могут быть, отнюдь не любые системы, а только те, которые удовлетворяют, по меньшей мере, двум условиям:

а) они должны быть открытыми, т. е. обмениваться веществом или энергией с внешней средой;

б) они должны также быть существенно неравновесными, т. е. находиться в состоянии, далеком от термодинамического равновесия.

Синергетика утверждает, что развитие открытых и сильно неравновесных систем протекает путем нарастающей сложности упорядоченности. В цикле развития такой системы наблюдаются две фазы:

1. Период плавного эволюционного развития с хорошо предсказуемыми линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию.

2. Выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большой степенью сложности и упорядоченности.

Достигшая критических параметров система из состояния сильной неустойчивости как бы «сваливается» в одно из многих возможных для нее устойчивых состояний. В этой точке (ее называет точкой бифуркации) эволюционный путь системы как бы разветвляется, какая именно ветвь развития будет выбрана – решает случай! Но назад возврата нет. Процесс этот необратим. Развитие таких систем имеет принципиально непредсказуемый характер. Можно просчитать варианты ветвления путей эволюции системы, но какой именно из них будет выбран случаем – однозначно спрогнозировать нельзя.

Поиск аналогичных процессов самоорганизации в других классах открытых неравновесных систем вроде обещает быть успешным: механизм действия лазера, рост кристаллов, химические часы (реакция Белоусова – Жаботинского), формирование живого организма, динамика популяций, рыночная экономика, наконец, в которой хаотичные действия миллионов индивидов приводят к образованию устойчивых и сложных макроструктур – все это примеры самоорганизации систем самой различной природы.

Синергетическая интерпретация такого рода явлений открывает новые возможности и направления их изучения. В обобщенном виде новизну синергетического подхода можно выразить следующими позициями:

1. Хаос не только разрушителен, но и созидателен, конструктивен; развитие осуществляется через неустойчивость (хаотичность).

2. Для сложных систем всегда существует несколько возможных путей эволюции.

3. Развитие осуществляется через случайный выбор одной из нескольких разрешенных возможностей дальнейшей эволюции. Случайность – не досадное недоразумение, она встроена в механизм эволюции. А это значит, что нынешний путь эволюции системы может быть и не лучше отвергнутых случайным выбором.

Страницы: 1 2

Смотрите также

Медь
Медь (лат. Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным - медь была хорошо известна египтянам еще за 4000 лет до Р. Хр. З ...

Ароматические гетероциклические соединения
Гетероциклическими называют соединения, содержащие циклы, включающие один или несколько гетероатомов. Наиболее устойчивыми являются пяти- и шестичленные циклы. Гетероциклические соединени ...

Основы биохимии белков и аминокислот в организме человека
Белки – это высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Название протеины (от греческого proteos - первый, важнейший) отража ...