Кислотно-каталитические процессы в нефтепереработке и в нефтехимии. Каталитический крекинг
Полезные материалы / Кислотно-каталитические процессы в нефтепереработке и в нефтехимии. Решение обратной задачи кинетики / Кислотно-каталитические процессы в нефтепереработке и в нефтехимии. Каталитический крекинг
Страница 1

Каталитическим крекингом называют совокупность различных превращений углеводородов, протекающих на кислотных катализаторах (в настоящее время – гетерогенных) с образованием компонентов авиационного и моторного (автомобильного) топлива из высококипящих фракций углеводородов.

Основные реакции: http://novosibirsk.akademikz.ru/uslugi/zadachi каталог купить решение задач.

(1) Деалкилирование (крекинг) парафинов

(2) Деалкилирование (крекинг) олефинов

(n = m + k)

(3) Деалкилирование алкилароматических соединений

(4) Ароматизация нафтенов

(5) Скелетная и позиционная изомеризация олефинов.

(6) Скелетная изомеризация парафинов

В современных процессах используют аморфные и кристаллические (цеолиты) алюмосиликаты Al2O3 – SiO2. Цеолиты бывают природные и синтетические. Общая формула цеолита

MxDy/2 AlmSinO2(m+n)·PH2O, x + y = m

где M и D – одно- и двухвалентные катионы. В настоящее время только X- и Y- синтетические цеолиты используются для крекинга углеводородов. Эти цеолиты близки природным цеолитам – мордениту (X) и шабазиту (Y). При общей формуле этих цеолитов

NapAlpSi192–pO384·gH2O

для X-цеолита P = 96 – 74, для Y-цеолита P = 74 – 48.

Кристаллическая структура цеолитов характеризуется сквозными порами одинакового диаметра (0.75 – 1.0 нм), превышающими размеры многих молекул углеводородов. При замене части ионов Na+ на ионы NH4+ и последующей прокалки на поверхности цеолита образуются сильные протонные центры

При отщеплении воды ( > 400оС) появляются апротонные кислотные центры Льюиса, локализованные на Al. Высококремнистые и термостабильные цеолиты ZSM-5 относят к очень сильным протонным кислотам (к сверхкислотам).

В основе теории механизмов реакций, протекающих в процессе каталитического крекинга, лежат представления об участии в стадиях механизмов ионов карбения и карбония и, таким образом, химия этих ионов и есть суть механизмов перечисленных выше процессов.

CH3+, R+ CH5+, RH2+

ионы карбения ионы карбония

На поверхности твердых кислотных катализаторов так же, как и в растворах, нет свободных ионов карбения R+. Такие частицы всегда сольватированы в растворах и переносятся на другие реагенты, освобождаясь от молекулы растворителя (как и H+).

На поверхности кислотных катализаторов можно представить аналогичный процесс “сольватации” (координации) иона карбения поверхностным оксидом

Координированный таким образом R+ аналогичен иону карбения в ионе алкоксония R3O+BF4– и может участвовать в реакциях с другими реагентами (олефинами, спиртами, аренами) аналогично реакциям алкоксониевых ионов в реакции полимеризации циклов (см. раздел 11). Ионы карбония могут находится в свободном состоянии, удерживаясь на поверхности за счет слабых водородных связей или за счет электростатических сил в виде ионных пар RH2+·X–.

В целом механизм процессов крекинга парафинов, олефинов, скелетной изомеризации парафинов и олефинов, реакций деалкилирования алкиларенов является цепным с кинетической точки зрения. Все эти процессы включают стадии инициирования, зарождения активных центров R+ (Wi), стадии продолжения кинетической цепи с участием ионов карбения и карбония и стадии обрыва активных R+ (W0) за счет примесей в реакционной смеси. Добавки долей процента олефинов к чистому алкану резко ускоряют процесс каталитического крекинга.

Образование кокса на поверхности алюмосиликатных катализаторов (следствие глубокого дегидрирования полимеров) является основной причиной дезактивации катализаторов крекинга, наряду с обратимым отравлением сильно адсорбирующимися примесями и необратимым отравлением металлами, содержащимися в нефтяных фракциях.

Различные функции падения активности по времени обобщены в теории, учитывающей, как важный фактор, время проведения процесса и предполагающей параллельное протекание различных процессов, ведущих к отравлению катализатора, т.е. к уменьшению количества активных центров CS. Уравнение (1) не включает концентраций реагентов и ядов и является, таким образом, эмпирическим уравнением, но оно было успешно применено для большого числа реакций крекинга и дегидрирования

(1)

Если обозначить долю центров, сохранивших активность, Q = CS/CS0, получим

Страницы: 1 2

Смотрите также

Углерод
Углерод (лат. Carboneum), С - химический элемент IV группы периодической системы Менделеева. Известны два стабильных изотопа 12С (98,892 %) и 13С (1,108 %).  Углерод известен с глубокой ...

Технология неконцентрированной азотной кислоты
Азотная кислота по объему производства занимает среди других кислот второе место после серной кислоты. Все возрастающий объем производства HNO3 объясняется огромным значением азотной кислот ...

Серебряно-цинковые источники тока
                Первым источником тока после изобретения электрофорной машины, был элемент Вольта названный в честь своего создателя. Итальянский физик А. Вольта объяснил причину гальваничес ...