Второе начало термодинамики.

Страница 1

Первого начала термодинамики недостаточно для полного описания термодинамических процессов. Оно позволяет точно найти энергетический баланс этих процессов, но не дает никаких указаний об их направлении и о возможности их протекания. Другой общей закономерностью, позволяющей находить направ­ление и устанавливать возможность или невозможность этих процессов, является второе начало термодинамики. Кроме того, второе начало устанавливает те условия, при которых превраще­ние какого-либо запаса тепловой энергии в полезную работу бу­дет проходить наиболее полно.

Второе начало термодинамики, так же как и первое начало, является результатом обобщения многолетнего человеческого опыта и, следовательно, опирается на огромный накопленный экспериментальный материал.

Исторически второе начало термодинамики было сформули­ровано гораздо раньше первого начала, но со временем оно по­лучало все новое и новое толкование, а его формулировки

стано­вились все более строгими. Впервые основное положение второ­го начала было дано М. В. Ломоносовым (1747 г.). В работе «Размышления о причинах теплоты и | стужи» Ломоносов говорит: «Если более теплое тело А приходит в со­прикосновение с другим телом Б, менее теплым, то находящиеся н точке соприкосновения частички тела А быстрее вращаются, чем соседние с ним частички тела Б. От более быстрого вращения частички тела А ускоряют вращательное движение частичек тела Б, т. е. передают им часть своего движения; сколько движения уходит от первых, столько же прибавляется ко вторым. Поэтому когда частички тела А ускоряют вращательное движение частичек тела Б, то замедляют свое собственное. А отсюда когда тело А при соприкосновении нагревает тело Б, то само оно охлаждается» . и далее, «Тело А при действии на тело Б не может придать последнему большую скорость движения, какую имеет само. Если поэтому тело Б холодное и погружено в теплое газообразное тело А, то тепловое движение частичек тела А приведет в тепловое движение частички тела Б, но в частичках тела Б не может возбудить более быстрое движение, чем какое имеется в частичках тела А. Поэтому холодное тело Б, погруженное в тело А, не может воспринять большую степень теплоты, чем какую имеет тело А».

Первая математи­ческая формулировка условий превращения теплоты в полезную работу была сделана Сади Карно (1824 г.). Им же были выве­дены следствия, имеющие большое значение для конструирова­ния паровых машин. В работах немецкого физика Клаузиуса (1850 г.) и английского физика Томсона (лорда Кельвина) (1851 г.) Пыли развиты идеи, которые вышли далеко за пределы первоначально поставленной теплотехнической задачи. ( Принцип Карно: для производства работы тепловой машины необходимы по крайне мере два источника теплоты с различными температурами; цикл Карно; постулат Карно-Томсона: равенство суммарного количества теплоты и суммарного количества работы нулю в круговом квазистатическом процессе; постулат Клаузиуса: невозможность осуществления холодильного цикла Карно, при котором источник работы совсем бы не произвел работы над системой, а холодильник отдал бы системе конечное, отличное от нуля количество теплоты и нагреватель, следовательно, получил бы от системы, по принципу эквивалентности, то же количество теплоты)

Несколь­ко позже Максвелл, Больцман и Гиббс установили связь второ­го начала с молекулярно-кинетическими представлениями. Это привело к статистическому толкованию второго начала термоди­намики.

Некоторые из формулировок второго начала наглядны и не­посредственно связаны с опытом, другие более абстрактны, но являются более удобными для математического развития теории. По Томеону: «Различные виды энергии стремятся переходить в теплоту, а теплота, в свою очередь, стремится рассеяться, т. е. распределиться между всеми телами наиболее равномерным об­разом». В этой формулировке содержится представление о том, что в природе происходит процесс рассеяния тепловой энергии, вследствие чего второе начало термодинамики иногда называют законом рассеяния или деградации тепловой энергии. По Клаузиусу: «Теплота никогда не переходит с более холодного тела на более горячее, тогда как обратный переход протекает само­произвольно».

Подобно тому, как первое начало вводит функцию состоя­ния— внутреннюю энергию, второе начало в форме, приданной ему дальнейшими работами Клаузиуса, вводит новую функцию состояния, названную им энтропией. Согласно второму на­чалу, в то время как внутренняя энергия изолированной системы остается неизменной, ее энтропия при всех самопроизвольных процессах увеличивается.

К вышесказанному необходимо также добавить, что содержа­ние второго начала иногда формулируется как невозможность создания perpetuum mobile второго рода, представляющего со­бой такую машину, которая заимствует тепло из резервуара какой-либо температуры и превращает его в работу, охлаждая этот резервуар и не производя больше никаких изменений в окружающих телах.

Существует еще несколько логически связанных друг с другом формулировок второго начала термодинамики, которые требуют более подробного знакомства с понятием обратимых и необрати­мых процессов, а также с понятием энтропии.

Страницы: 1 2

Смотрите также

Густой дым как поток продуктов горения
...

Технологии для улучшения экологических и эксплуатационных характеристик дизельных топлив
Экологически чистое дизельное топливо выпускают по ТУ 38.1011348—89. Технические условия предусматривают выпуск двух марок летнего (ДЛЭЧ-В и ДЛЭЧ) и одной марки зимнего (ДЗЭЧ) дизельного топлива с ...

Водородная связь
Помимо различных гетерополярных и гомеополярных связей, существует еще один особый вид связи, который в последние два десятилетия привлекает все большее внимание химиков. Это так называемая ...