Влияние природы углеродных наполнителей на свойства и эксплуатационные характеристики обожженных анодов

Полезные материалы / Влияние природы углеродных наполнителей на свойства и эксплуатационные характеристики обожженных анодов
Страница 3
https://your-credit-card.ru/ntttvn-online/articles/hab-17-nt/

На третьем этапе, используя указанный подход к оценке технологических свойств наполнителей, проводили изучение прессовых характеристик прокаленных коксов (фракция 1,0—1,5 мм) в интервале давления прессования 200—800 кг/см2. При увеличении поверхности шлифов коксов в 1000 раз также изучалась их структура.

В интервале давления от 200 до 600 кг/см2 (см. рис. 2) происходит значительное снижение Кпд на основании чего можно сделать вывод, что в данном интервале давление прессования может влиять на физические свойства «зеленых» и обожженных образцов. При более высоком давлении от 600 до 800 кг/см2 зависимости становятся более монотонными и значения отличаются друг от друга незначительно. В указанном интервале начинает происходить раздавливание материала, вследствие этого нарушается начальный фракционный состав шихты и возникают предпосылки к возникновению трещин в «зеленых» образцах за счет сил упругого расширения после окончания прессования.

Установлено, что нефтяные коксы обладают меньшим АДЦ, за исключением кокса СПЗ «Сланцы», что указывает на их худшие прессовые характеристики и увеличение вероятности возникновения трещин и расслоений. Отмечены близкие значения АГВД пековых коксов и смеси нефтяных СПЗ «Сланцы», что вполне согласуется с полученными данными при изучении объемно-структурных характеристик коксов.

Исследование структуры коксов проводили на оптическом микроскопе. На рис. 3 светлые участки соответствуют более близкой к поверхности части кокса. Полученные снимки свидетельствуют о выраженной изотропной структуре пековых коксов, в отличие от нефтяных, имеющих более анизотропную микроструктуру с существенной долей волокнистых составляющих.

Кокс СПЗ «Сланцы» отличается большими областями мелкопористой структуры (светлые участки) в сравнении с другими нефтяными коксами. В то же время, в сравнении с исковыми коксами, поры у этого кокса более крупные и вытянутые. Согласно имеющимся представлениям более упругими свойствами будет обладать материал, который имеет заметную долю волокнистой структуры. Этим объясняются более низкие значения Кт нефтяных коксов Ангарского и Пермского НПЗ.

На четвертом этапе изучались физико-химические свойства «зеленых» и обожженных образцов на основе представленных коксов, прокаленных предварительно при разных температурах. Гранулометрический состав шихты и удельная поверхность пыли, кроме содержания связующего, задавались близкими для всех образцов. Количество пека для пековых и нефтяных коксов изменялось в соответствии с их различной пористостью. Для пековых коксов содержание связующего составляло 15%, для нефтяных 16%. Смешивание шихты, прессование и обжиг производили при равных параметрах для всех видов коксов. Результаты физико-химических испытаний представлены в табл. 2.

Обожженные образцы на основе пековых коксов характеризуются меньшей пористостью, более высокими значениями кажущейся плотности, их электропроводность, механическая прочность, теплопроводность и модуль упругости также выше, чем у образцов из нефтяных коксов.

В то же время химическая стойкость в среде углекислого газа у образцов на основе пековых коксов с действительной плотностью 2,00 и 2,02 г/см3 значительно ниже, чем у образцов на основе пермского и ангарского коксов. Однако при плотности 1,98 г/см3 для смеси коксов ИркАЗа и 1,99 г/см3 для кокса ЮАР показатели стойкости приближаются к значениям нефтяных коксов.

Повышенную химическую активность образцов на основе смеси пековых коксов ИркАЗа можно объяснить относительно высоким содержанием отдельных элементов в зольных примесях, характером поровой структуры, высоким коэффициентом термического линейного расширения (КТЛР) самих коксов, который повышался с ростом действительной плотности коксов. Ранее было установлено [4], что чем выше КТЛР, тем интенсивнее протекает процесс образования микротрещин на границе «кокс-наполнитель— кокс из связующего», что повышает реакционную способность материала.

Отрицательное влияние зольных примесей наиболее ярко проявилось на примере нефтяного кокса СПЗ «Сланцы». При высокой зольности и сравнительно большом содержании натрия, образцы имели самую высокую реакционную способность в токе СО2.

Страницы: 1 2 3 4

Смотрите также

Химия лантаноидов
Судя по последним публикациям, нынче довольно трудно отметить те стороны жизни, где бы не находили применение лантаноиды. На основе лантаноидов получают многие уникальные материалы, кото ...

Перечень условных сокращений,  обозначений, применяемых в проекте.
АК - азотная кислота СК - серная кислота НКЛ – нитрокаллоксилин ОК - отработанная кислота ВКУ – вихревое контактное устройство АСУТП – автоматизированные системы  управления технологич ...

                        Выводы:
1.         Синтезированы и охарактеризованы бета-дикетонаты палладия. 2.         Проведено исследование колебател ...